Voß, HeinrichHeinrichVoßElssel, KoljaKoljaElssel2005-12-142005-12-142005-03http://tubdok.tub.tuhh.de/handle/11420/61In this paper we generalize the automated multi–level substructuring method to certain classes of nonlinear eigenvalue problems which can be partitioned into an essential linear and positive definite pencil and a small residual. The efficiency of the method is demonstrated by numerical examples modeling damped vibrations of a structure with nonproportional damping, a gyroscopic eigenproblem, and a rational eigenproblem governing free vibrations of a fluid–solid structure.enhttp://rightsstatements.org/vocab/InC/1.0/nichtlineares Eigenwertproblemdünnbesetzte Matrizeniterative ProjektionsmethodeArnoldi Methodeautomated multi-level substructuringAMLSnonlinear eigenproblemsparse matrixiterative projection methodArnoldi methodMathematikAutomated Multilevel Substructuring for Nonlinear EigenproblemsPreprint2005-12-14urn:nbn:de:gbv:830-opus-114210.15480/882.59Nichtlineares EigenwertproblemSchwach besetzte MatrixProjektionsmethodeIterationEigenvalues, eigenvectors11420/6110.15480/882.59930767821Other