Hoffmann, Anna SophieAnna SophieHoffmannBhattacharya, DebayanDebayanBhattacharyaBecker, Benjamin TobiasBenjamin TobiasBeckerBeyersdorff, DirkDirkBeyersdorffPetersen, ElinaElinaPetersenPetersen, MarvinMarvinPetersenEggert, DennisDennisEggertSchlaefer, AlexanderAlexanderSchlaeferBetz, Christian StephanChristian StephanBetz2024-01-102024-01-102023-05-12Laryngo-Rhino-Otologie 102 (S 02): 200 (2023)https://hdl.handle.net/11420/45006Large scale population studies have been performed to analyse the rate of finding sinus opacities in cranial MRIs. It is of interest whether there are findings requiring clarification. Using AI-based methods can automate the detection of the sinus opacities and reduce the workload of clinicians. In this work, a method for AI-based classification was developed in order to automatically recognise paranasal sinus opacitiesen1438-8685Laryngo-Rhino-Otologie2023S 02200ThiemeComputer SciencesMedicine, HealthElectrical Engineering, Electronic EngineeringAnalysing the feasibility of an automated AI-based classifier for detecting paranasal anomalies in the maxillary sinusJournal Article10.1055/s-0043-1767093Journal Article