2023-06-252023-06-25https://tore.tuhh.de/handle/11420/15726Für das Design von Pfahlgründungen ist das Langzeit-Last-Verformungsverhalten von Pfählen unter zyklischer Axial- und Horizontallast von großer Bedeutung. Eine Vorhersage dieses Verhaltens ist aufgrund der unterschiedlichen Arten der zyklischen Belastung sowie einer im Vergleich zu konventionellen Ingenieurbauwerken extrem großen Anzahl an Lastzyklen mit großen Unsicherheiten verbunden. Es ist ein Bemessungsansatz erforderlich, der das Bodenverhalten unter zyklischer und hochzyklischer Belastung und das spezifische Lastverhalten der Struktur wiedergibt. Existierende Ansätze zeigen bereits bei der Anwendung auf monotone Pfahlbelastungen signifikante Unsicherheiten auf. Das Hauptziel dieses Forschungsvorhabens ist die Weiterentwicklung eines Bemessungsansatzes basierend auf einem existierenden Bettungsmodell namens SRMHYP, das momentan für die zyklische laterale Belastung von Einzelpfählen in Sand ausgelegt ist. Dieses Modell soll am Ende des Projektes folgende Fälle abdecken: Einzelpfähle und Pfahlgruppen, Sand und Ton, zyklische und hochzyklische axiale und laterale Belastung, Bodensteifigkeit bei kleiner und großer Dehnung, ratenunabhängiges Verhalten von Sand und ratenabhängiges Verhalten von Ton, Effekte infolge Pfahlinstallation und Anwachseffekte. Zur Validierung des SRMHYP-Modells werden die Ergebnisse aus Zentrifugenversuchen, numerischen Simulationen und vorhandene Ergebnisse aus Feldversuchen verwendet. Alle geplanten Experimente, Modelle und numerischen Simulationen sind für zwei definierte Modellböden ausgelegt, nämlich ein feiner gleichförmiger Quarzsand als Vertreter für kohäsionslose Böden und ein Kaolin als Vertreter für kohäsive Böden. Die Ergebnisse der bodenmechanischen Laborversuche an Sand und Kaolin mit zyklischer Belastung dienen als Eingangsgrößen für das SRMHYP-Modell, zur Weiterentwicklung eines Spannungs-Dehnungs-Modells für Kaolin zur Weiterentwicklung von Akkumulationsmodellen für Sand und Kaolin sowie zur Kalibrierung hypoplastischer und visko-hypoplastischer Modelle für Sand und Kaolin. Die Ergebnisse der Zentrifugenversuche an Pfählen in Sand und Kaolin unter zyklischer Last und unter definierten Bedingungen dienen der Validierung des SRMHYP-Modells und auch der numerischen Simulationen, da sie unter einem realistischen Spannungsniveau durchgeführt werden. Die numerische Simulation von Pfählen unter zyklischer und hochzyklischer Belastung erfolgt auf der Grundlage eines Kontinuumsansatzes und der FEM. Hierbei werden die oben beschriebenen weiterentwickelten Stoff- und Akkumulationsmodelle angewendet. Weiterhin sind Änderungen am Kontaktmodell für die Kontaktfläche Pfahl/Boden und Arbeiten an Stoffroutinen für das FE-Programm erforderlich. Die Ergebnisse der numerischen Simulationen dienen der Abstraktion des einfacheren und weniger rechenaufwändigen SRMHYP-Modells. Die Validierung von Simulationsmodellen erfolgt anhand der Ergebnisse aus Zentrifugen- und Feldversuchen.Long term load-displacement behaviour of piles under cyclic axial and lateral loading is essential for the design of pile foundations. The prediction of this behavior is linked to large uncertainties due to the distinct type of cyclic loading as well as the extremely high numbers of load cycles compared to conventional engineering structures. There is a need of a design approach being able to cover the soil behavior under cyclic and high-cyclic loading and the specific behavior of pile constructions. Existing design approaches show significant uncertainties already for monotonic loading. The major objective of the research project is the further development of a design approach based on an existing subgrade reaction method called SRMHYP, that is currently designed for lateral cyclic loaded single piles in sand. This model is planned to cover the following cases at the end of the project: single piles and pile groups, sand and clay, cyclic and high-cyclic axial and lateral lading, soil stiffness for small and large deformation, rate-independent behavior of sand and rate-dependent behavior of clay, effects due to pile installation and set-up. This extended model will be validated by means of centrifuge tests, numerical simulations, and existing results of field tests. All planned experiments, models and numerical simulations are designed for two different model soils, namely a fine uniform silica sand and a kaolin clay representing non-cohesive and cohesive soils. The results of the laboratory tests on sand and kaolin with cyclic loading are used as input parameters for the SRMHYP model, for further development of a stress-strain model for kaolin, for further development of high-cycle accumulation models for sand and clay, and for calibration of hypoplastic and visco-hypoplastic models for sand and clay. The results of the centrifuge tests on cyclic loaded piles in sand and clay under defined conditions are used to validate the SRMHYP model, and additionally the numerical simulations, because the tests are carried out under a realistic stress level. The numerical simulations of piles under cyclic and high-cyclic loading are based on the continuum approach and the FEM. Therefore, the further developed of the stress-strain model for clay and the accumulation models for sand/clay mentioned above are applied. Additional work on the contact model for the contact surface pile/soil as well as work on the user subroutines for the FE-program are necessary. The results of the numerical simulations serve as a basis for the abstraction of the simpler and less computer consuming SRMHYP model. The simulation models are validated by means of results of centrifuge tests and results from field tests.Ganzheitlicher Ansatz für das Design von Einzelpfählen und Pfahlgruppen unter zyklischer BelastungHolistic approach for the design of single piles and pile groups under cyclic loading