Bünger, FlorianFlorianBünger2019-11-222019-11-222017-09-15Linear Algebra and Its Applications (529): 126-132 (2017-09-15)http://hdl.handle.net/11420/3852For a real (n×n)-matrix A the sign-real and the sign-complex spectral radius – invented by Rump – are respectively defined as ρR(A):=max⁡|λ|||Ax|=|λx|,λ∈R,x∈Rn{0,ρC(A):=max⁡|λ|||Ax|=|λx|,λ∈C,x∈Cn{0. For n≥2 we prove ρR(A)≥ζn ρC(A) where the constant ζn:=[formula omitted] is best possible.en0024-3795Linear algebra and its applications2017126132Eigenvalue inequalitiesSign-complex spectral radiusSign-real spectral radiusSpectral radiusA short note on the ratio between sign-real and sign-complex spectral radius of a real square matrixJournal Article10.1016/j.laa.2017.04.022Other