Voß, HeinrichHeinrichVoß2005-12-142005-12-142005-08Preprint. Published in Journal of computational physics.Volume 217, Issue 2, 20 September 2006, Pages 824-833http://tubdok.tub.tuhh.de/handle/11420/59A computational technique for computing relevant energy levels and corresponding wave functions of an electron confined by a 3D quantum dot embedded in a semiconductor matrix are studied. Assuming an energy and position dependent electron effective mass approximation this problem is governed by a rational eigenvalue problem. We discuss the application of iterative projection method of Arnoldi and Jacobi–Davidson type. Projected problems of small dimension are solved efficiently by safeguarded iteration.enhttp://rightsstatements.org/vocab/InC/1.0/quantum dotelectron statesrational eigenproblemArnoldi methodJacobi-Davidson methodMathematikIterative projection methods for computing relevant energy states of a quantum dotPreprint2005-12-19urn:nbn:de:gbv:830-opus-112210.15480/882.57QuantenpunktElektronenzustandEigenwertproblemEigenvalues, eigenvectorsSparse matrices11420/5910.1016/j.jcp.2006.01.03410.15480/882.57930767655Preprint