Seifert, ChristianChristianSeifertVogt, HendrikHendrikVogt2021-05-202021-05-202013-12-21Integral Equations and Operator Theory 78 (3): 383-405 (2014)http://hdl.handle.net/11420/9578We study one-dimensional Schrödinger operators with complex measures as potentials and present an improved criterion for absence of eigenvalues which involves a weak local periodicity condition. The criterion leads to sharp quantitative bounds on the eigenvalues. We apply our result to quasiperiodic measures as potentials. © 2013 Springer Basel.en1420-8989Integral equations and operator theory20133383405Springereigenvalue problemquasiperiodic potentialSchrödinger operatorsMathematikA weak Gordon type condition for absence of eigenvalues of one-dimensional Schrödinger operatorsJournal Article10.1007/s00020-013-2099-4Other