2023-06-252023-06-25https://tore.tuhh.de/handle/11420/15901Der Klimawandel ist spürbar. Um die Folgen des Klimawandels langfristig bewältigen zu können, muss die Resilienz von Infrastrukturbauwerken gesteigert werden. Zur Steigerung der Resilienz ist genaue Kenntnis über den aktuellen Zustand der Infrastrukturbauwerke erforderlich, wobei Struktur- und Umweltinformationen sowie zunehmend sozioökonomische Phänomene zu berücksichtigen sind. Moderne Infrastrukturbauwerke können bereits heute ihren Zustand selbst analysieren und sich über intelligente Aktorik aktiv an die Randbedingungen der Umgebung anpassen, sind aber nach wie vor kaum oder gar nicht in der Lage, aus sensorisch erfassten Struktur- und Umweltdaten zu lernen, zu antizipieren oder selbstständig das Internet der Dinge ("Internet of Things“, IoT) zur Integration von resilienzbezogenen, sozioökonomischen Phänomenen zu nutzen. Dieses Projekt zielt darauf ab, das Paradigma der "kognitiven Bauwerke" auf Resilienz zu übertragen, um eine neuartige wissenschaftliche Grundlage für resiliente Infrastruktur bereitzustellen. Kognitive Bauwerke können unterschiedlichste Parameter sensorisch erfassen, aus externen (bzw. benutzerbezogenen) Sachverhalten lernen und sich mit smarten IoT-Geräte vernetzen, um das eigene Verhalten zu optimieren. Kognitive Bauwerke, die neben der Benutzerzufriedenheit üblicherweise die Reduzierung des Energieverbrauchs und der CO2-Bilanz fokussieren, haben jedoch bislang nicht die Möglichkeit, die für resiliente Infrastruktur essentiellen Informationen über das Tragverhalten zu integrieren. Das beantragte Projekt verfolgt das Ziel, insbesondere resilienzbezogene Strategien des Bauwerksmonitorings (engl. "Structural Health Monitoring", SHM) und der adaptiven Strukturen (engl. "Structural Control", SC) in das Paradigma der kognitiven Bauwerke zu integrieren. Hierbei sollen physikalisch basierte Modelle über Konzepte der dynamischen Substrukturierung zunächst für drahtlose SHM/SC-Systeme nutzbar gemacht und dann in das Paradigma der kognitiven Bauwerke integriert werden, da physikalisch basierte Modelle, anders als die üblicherweise verwendeten datenbasierten Modelle, die Informationen bereitstellen können, die für verlässliche, resilienzrelevante Vorhersagen über das Tragverhalten von Infrastrukturbauwerke benötigt werden. Dieses Forschungsprojekt wird aus einer DFG-finanzierten, deutsch-griechischen Fördermaßnahme zum Aufbau einer internationalen Kooperation heraus beantragt. Das erwartete Ergebnis des hier beantragten Forschungsprojekts ist eine Methodik zur effizienten Einbettung dezentraler, physikalisch basierter Modelle in drahtlose SHM/SC-Systeme, die die Resilienz von Infrastrukturbauwerken verbessert. Es wird außerdem erwartet, dass dieses Projekt dazu beitragen wird, Infrastrukturbauwerke in die Konzepte der "Industrie 4.0", der "Smart City" und dem "Internet of Everything" zu integrieren und einen Beitrag zu resilienter Infrastruktur im Angesicht des Klimawandels zu leisten.Climate change is evident. There is an urgent need to ensure resilience of civil infrastructure against impacts of a changing climate. Making civil infrastructure resilient requires precise insights into the infrastructure condition, taking into account structural and environmental information and, increasingly, socio-economic phenomena. Modern civil infrastructure is able to both analyze its condition and to adapt to the environment, e.g. through (semi-)active dampers or sensor-based actuators. However, although frequently termed "smart", current infrastructure is unable to learn or to anticipate from structural and environmental factors, or to utilize the Internet of Things (IoT) for integrating socio-economic phenomena. This project aims to take advantage of the emerging paradigm of "cognitive buildings" to develop a novel scientific basis towards resilient infrastructure. Cognitive buildings are able to sense environmental conditions, to learn from external (or user-related) factors, and to integrate IoT devices to optimize performance. However, cognitive buildings, typically focusing on reducing energy consumption and carbon footprint, lack the ability of seamlessly integrating structural information relevant to resilience. The proposed project therefore aims to extend the cognitive buildings paradigm towards infrastructure resilience. As a point of departure, structural health monitoring and structural control (SHM/SC) strategies, relevant to resilient infrastructure, will be considered. For several years, SHM/SC practice has been mainly relying on data-driven modeling for extracting information on the structural condition. However informative, data-driven modeling lacks physical background and fails to provide the information necessary for SHM/SC to produce reliable predictions on future structural behavior. As a consequence, the proposed extension to the cognitive buildings paradigm will involve integrating decentralized, physics-based modeling into wireless SHM/SC. This research is proposed out of a DFG-funded German-Greek joint research project conducted to initiate an international collaboration. The expected outcome of the proposed research is a methodology for efficiently embedding decentralized physics-based models into wireless SHM/SC systems to advance infrastructure resilience. It is further expected that this project will contribute to enhancing the performance of wireless SHM/SC systems and to integrating infrastructure systems into the concepts of "Industry 4.0", "Smart City", and the "Internet of Everything". This research project marks a shift towards an entirely new paradigm in embedded computing for wireless SHM/SC in accordance with ongoing developments facilitating resilient infrastructure in the light of climate change.Resiliente Infrastruktur basierend auf kognitiven BauwerkenResilient infrastructure based on cognitive buildings