Rustige, LennartLennartRustigeKummer, JanisJanisKummerGriese, FlorianFlorianGrieseBorras, KerstinKerstinBorrasBrüggen, MarcusMarcusBrüggenConnor, Patrick L. S.Patrick L. S.ConnorGaede, FrankFrankGaedeKasieczka, GregorGregorKasieczkaKnopp, TobiasTobiasKnoppSchleper, PeterPeterSchleper2025-08-202025-08-202023-05-26RAS Techniques and Instruments 2 (1): 264-277 (2023)https://hdl.handle.net/11420/48578Machine learning techniques that perform morphological classification of astronomical sources often suffer from a scarcity of labelled training data. Here, we focus on the case of supervised deep learning models for the morphological classification of radio galaxies, which is particularly topical for the forthcoming large radio surveys. We demonstrate the use of generative models, specifically Wasserstein generative adversarial networks (wGANs), to generate data for different classes of radio galaxies. Further, we study the impact of augmenting the training data with images from our wGAN on three different classification architectures. We find that this technique makes it possible to improve models for the morphological classification of radio galaxies. A simple fully connected neural network benefits most from including generated images into the training set, with a considerable improvement of its classification accuracy. In addition, we find it is more difficult to improve complex classifiers. The classification performance of a convolutional neural network can be improved slightly. However, this is not the case for a vision transformer.en2752-8200RAS techniques and instruments20231264277https://creativecommons.org/licenses/by/4.0/Data MethodsMachine Learningdata analysisstatisticalgalaxiesimage processingNatural Sciences and Mathematics::523: Astronomical Objects and AstrophysicsComputer Science, Information and General Works::006: Special computer methods::006.3: Artificial IntelligenceMorphological classification of radio galaxies with Wasserstein generative adversarial network-supported augmentationJournal Articlehttps://doi.org/10.15480/882.1317810.1093/rasti/rzad01610.15480/882.13178Journal Article