Häusler, FelixFelixHäuslerStührenberg, JanJanStührenbergSmarsly, KayKaySmarslyNeumann, Patrick P.Patrick P.Neumann2024-01-032024-01-032023IEEE Sensors (2023)979-8-3503-0387-2https://hdl.handle.net/11420/44860Gas source localization (GSL) helps mitigate the impact of industrial accidents and natural disasters. While GSL may be dangerous and time-consuming when performed by humans, swarms of agile and inexpensive nano aerial robots may increase the safety and efficiency of gas source localizations. Since the small payloads of nano aerial robots limit the sensing and computing resources, strategies adapted from biological swarms, such as colonies of social insects, are used to coordinate robot swarms. Most swarm GSL strategies are based on the assumption that the maxima of gas concentrations are sufficiently close to the gas sources. However, prior studies have indicated that the occurrence of 'bouts', a metric for the intermittency of gas distributions, may advantageously be used as a more accurate gas source proximity indicator. This paper presents a swarm GSL strategy employing bouts as source proximity indicators and a bio-inspired pheromone system for communication. Nano aerial robots, deployed in this study, act as agents and emit pheromone markers in an artificial environment upon detecting bouts. Leveraging the concept of artificial potential fields, the agents switch between exploiting the knowledge of the swarm by following pheromone gradients and exploring the search space by targeting a random point. The agents are repelled by each other and by walls to avoid collisions. The swarm GSL strategy is implemented into three nano aerial robots and validated in a real-world experiment in an indoor environment with a single gas source. The results indicate that the the swarm GSL strategy presented in this paper is capable of GSL in indoor environments and that the intermittency of gas distributions is a better source proximity indicator than the mean concentration.enboutsdistributed roboticsgas source localizationMobile robotic olfactionnano aerial robotComputer SciencesEngineering and Applied OperationsCivil Engineering, Environmental EngineeringBout-based gas source localization using aerial robot swarmsConference Paper10.1109/SENSORS56945.2023.10325109Conference Paper