Relativistische photonische Bandlückenspiegel in der integrierten Optik


Project Title
Relativistic photonic band gap mirror on chip
 
Funding Code
PE 2132/2-1
 
 
Principal Investigator
 
 
Status
Abgeschlossen
 
Duration
01-05-2018
-
30-04-2021
 
GEPRIS-ID
 
 
Project Abstract
In this proposal we first time draft the route towards experimental realisation of photonic crystal based relativistic mirrors which can be used to dramatically manipulate the frequency and bandwidth of optical signals. For that we propose to realise a system of coupled photonic crystal waveguides and operate it close to the point of degeneracy, also called Dirac point. This degeneracy can be lifted by free carriers generated via two photon absorption of the pump pulse. The lifted degeneracy will constitute a local photonic band gap, where the spatial boundary of this band gap will move with the group velocity of the pump pulse. The optical signal at a frequency within the local band gap will experience reflection with frequency shift and bandwidth change. The proposed system will allow an exploitation of the relativistic mirror in integrated optics technology. The main goals of this project are the realisation of coupled waveguides with small propagation loss close to the Dirac point, as well as efficient injection of the signal and pump pulses into the waveguide system. Afterwards the dynamic experiments of signal reflection from relativistic photonic band gap front are planned. It is expected that the signal duration can be compressed by 10-100 times after reflection without significant frequency shift. Experimental realisation of photonic band gap fronts will also make possible the investigation of other related effects, e.g. spontaneous generation of photons at the front.The project is submitted in the frame of the Joint Sino-German call for proposals organised by the German Research Foundation (DFG) and the National Natural Science Foundation of China (NSFC). It will be conducted in cooperation with Dr. Juntao Li and Dr. Xinlun Cai from Sun Yat-sen University (SYSU), Guangzhou, China. The project at SYSU will concentrate on the design optimization for lithography and ion etching processes and on fabrication of low loss coupled photonic crystal waveguides. The challenge is the adjustment of manufacturing processes for nanometer precision. The applicants at Hamburg University of Technology (TUHH) will design the structures and measure relativistic effects on chip.
 

Publications
(All)

Results 1-16 of 16

Issue DateTitleTypeAuthor(s)
123-Jun-2021Fulltext availableOpen AccessFourier optics with linearly tapered waveguides: light trapping and focusingArticleGaafar, Mahmoud Abdelaziz ; Renner, Hagen ; Eich, Manfred ; Petrov, Alexander  
214-Aug-2020Fulltext availableOpen AccessPulse time reversal and stopping by a refractive index frontArticleGaafar, Mahmoud Abdelaziz ; Holtorf, Jannik ; Eich, Manfred ; Petrov, Alexander  
326-Feb-2020Optical reflection from a free carrier-induced front in a slow light waveguideChapter/Article (Proceedings)Gaafar, Mahmoud Abdelazis ; Jalas, Dirk ; O'Faolain, Liam ; Li, Juntao ; Krauss, Thomas F. ; Petrov, Alexander  ; Eich, Manfred 
4Feb-2020Linear Schrödinger equation for front-induced transitions close to the band edgeChapter/Article (Proceedings)Gaafar, Mahmoud Abdelaziz ; Renner, Hagen ; Petrov, Alexander  ; Eich, Manfred 
52020Front induced transitions: Refractive index fronts in dispersive waveguidesChapter/Article (Proceedings)Gaafar, Mahmoud Abdelaziz ; Renner, Hagen ; Baba, Toshihiko ; Eich, Manfred ; Petrov, Alexander  
62020Optical push broom in a silicon waveguideChapter/Article (Proceedings)Gaafar, Mahmoud Abdelaziz ; Li, He ; Cai, Xinlun ; Li, Juntao ; Eich, Manfred ; Petrov, Alexander  
71-Nov-2019Front-induced transitionsReview (Article)Gaafar, Mahmoud Abdelazis ; Baba, Toshihiko ; Eich, Manfred ; Petrov, Alexander  
822-Jul-2019Linear Schrödinger equation with temporal evolution for front induced transitionsArticleGaafar, Mahmoud Abdelazis ; Renner, Hagen ; Petrov, Alexander  ; Eich, Manfred 
94-Mar-2019Linear Schrödinger equation with temporal evolution for front-induced indirect transitions in highly dispersive waveguidesChapter/Article (Proceedings)Gaafar, Mahmoud Abdelazis ; Renner, Hagen ; Petrov, Alexander  ; Eich, Manfred 
104-Mar-2019Front-induced intraband indirect photonic transition in slow-light waveguideChapter/Article (Proceedings)Gaafar, Mahmoud Abdelazis ; Jalas, Dirk ; O'Faolain, Liam ; Li, Juntao ; Krauss, Thomas F. ; Petrov, Alexander  ; Eich, Manfred 
111-Jan-2019Free-carrier detection in a silicon slab via absorption measurement in 2D integrating cellsArticleFohrmann, Lena Simone ; Lotfi, Nima ; Alzein, Bilal ; Gaafar, Mahmoud Abdelazis ; Petrov, Alexander  ; Eich, Manfred 
1220-Aug-2018Fulltext availableOpen AccessAuthor Correction: Reflection from a free carrier front via an intraband indirect photonic transitionArticleGaafar, Mahmoud A. ; Jalas, Dirk ; O'Faolain, Liam ; Li, Juntao ; Krauss, Thomas F. ; Petrov, Alexander Yu.  ; Eich, Manfred 
1313-Apr-2018Fulltext availableOpen AccessReflection from a free carrier front via an intraband indirect photonic transitionArticleGaafar, Mahmoud A. ; Jalas, Dirk ; O'Faolain, Liam ; Li, Juntao ; Krauss, Thomas F. ; Petrov, Alexander  ; Eich, Manfred 
142018Indirect transitions at a free carrier front in a silicon slow light waveguideChapter/Article (Proceedings)Petrov, Alexander  ; Gaafar, Mahmoud Abdelazis ; Jalas, Dirk ; O'Faolain, Liam ; Li, Juntao ; Krauss, Thomas F. ; Eich, Manfred 
1517-Oct-2017Free carrier front induced indirect photonic transitions: a new paradigm for frequency manipulation on chipArticleGaafar, Mahmoud Abdelazis ; Petrov, Alexander  ; Eich, Manfred 
162017Transmission and reflection from a free carrier front in a silicon slow light waveguideChapter/Article (Proceedings)Gaafar, Mahmoud Abdelazis ; Jalas, Dirk ; O'Faolain, Liam ; Li, Juntao ; Krauss, Thomas F. ; Petrov, Alexander  ; Eich, Manfred