Aktives Lernen zur Optimierung von EMV-Prozessen

Project Title
Active Learning for Optimization of EMC processes
Principal Investigator
Funding Organization
Project Abstract
With the ever increasing operating frequencies and powers, EMC has now become a major consideration on any project involving the design, construction, manufacture and installation of electrical and electronic equipment and systems. An important step in the design of components and prediction of EMC related problems is the modeling and simulation. The complexity and performance of electrical and electronic devices as well as the number and range of variables in the design spaces means that many of the Physics-Based (PB) used tools are either too slow or too inaccurate for effective design and optimization. Recently, machine learning (ML) tools and techniques have been increasingly used in the EMC domain either to improve PB approaches or to replace them. In ML, computers are used to probe vast amounts of data for structure. One requirement for the effective ML model building is the availability of these large datasets for the training and testing processes. The generation of simulation data of EMC systems using PB tools is more than often quite expensive and very time consuming.

The main goal of this project is the adaptation and extension of active learning schemes such as Bayesian Optimization (BO) to the realm of EMC. In active learning, the expensive to evaluate samples used for training and prediction are intelligently collected at each iteration to reduce the needed number of simulation runs. The active learning methods can be used for optimization tasks, modeling of systems or both at the same time. The main working points can be summarized as:

- Adaptation and foundation-laying of BO-based optimization and model building in the fields of EMC, SI, PI and bio-EMC.
- Establishment of a framework to evaluate the certainty in the solutions provided by the active learning scheme.
- Contribution to the available databases with the generated datasets for the service of the electrical engineering and EMC community.