Options
Projekt Titel
SFB 986: Subproject A06 - Synthesis and characterization of hierarchical, multifunctional ceramic/metal-polymer materials systems
Förderkennzeichen
192346071
Aktenzeichen
945.04-993
Startdatum
July 1, 2012
Enddatum
June 30, 2024
Gepris ID
Ãœbergeordnetes Projekt
Loading...
The aim of this project is creating new bioinspired materials, through the design, synthesis and characterization of hierarchically structured composites. Such materials consist of hard (ceramic/metal) and soft phases (polymers and organic ligands).
Pre-structured functionalized nanoparticles received from projects A1 and A2 are assembled into a material of progressively higher hierarchical levels. The processing steps involve self-assembly, hot-pressing and spouted bed spray granulation (with projects A2 and A3). The objective for the highest hierarchical level is an anisotropic brick-and-mortar structure, analogous to the one characterizing nacre and other exceptionally strong and tough natural materials. The composites, as well as their individual hierarchical levels, will be characterized both structurally (in collaboration with projects A7, Z2 and Z3) and mechanically (in collaboration with projects Z2 and Z3), from the nano- to the macro-scale.
The key scientific question to be addressed concerns the role played by each building unit, at the different length scales, in the material’s macroscopic features. To do so, it is imperative to determine which properties and arrangements of the building units (polymeric, ceramic, metallic and nanocomposite particles) are necessary and sufficient to attain the desired mechanical and multifunctional characteristics in the final bulk material. Gaining this knowledge will ultimately lead to the tailored design of novel nanocomposites.
Pre-structured functionalized nanoparticles received from projects A1 and A2 are assembled into a material of progressively higher hierarchical levels. The processing steps involve self-assembly, hot-pressing and spouted bed spray granulation (with projects A2 and A3). The objective for the highest hierarchical level is an anisotropic brick-and-mortar structure, analogous to the one characterizing nacre and other exceptionally strong and tough natural materials. The composites, as well as their individual hierarchical levels, will be characterized both structurally (in collaboration with projects A7, Z2 and Z3) and mechanically (in collaboration with projects Z2 and Z3), from the nano- to the macro-scale.
The key scientific question to be addressed concerns the role played by each building unit, at the different length scales, in the material’s macroscopic features. To do so, it is imperative to determine which properties and arrangements of the building units (polymeric, ceramic, metallic and nanocomposite particles) are necessary and sufficient to attain the desired mechanical and multifunctional characteristics in the final bulk material. Gaining this knowledge will ultimately lead to the tailored design of novel nanocomposites.