TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. CRIS
  3. Funding
  4. Efficient valorisation of CO2 and bio-waste for long-term energy storage using a microwave plasma torch and quenching using the reverse Boudouard reaction
 
Options
Akronym
EffiTorch
Projekt Titel
Efficient valorisation of CO2 and bio-waste for long-term energy storage using a microwave plasma torch and quenching using the reverse Boudouard reaction
Förderkennzeichen
101172766
Startdatum
October 1, 2024
Enddatum
September 30, 2028
Award URL
https://cordis.europa.eu/project/id/101172766
Loading...
Thumbnail Image
Funder
European Commission  
Institut
Umwelttechnik und Energiewirtschaft V-9  
Projektleitung
Kaltschmitt, Martin  
Co-Projektleitung
Sticht, Peter
Now that renewable energy generation is already competitive in cost with electricity obtained from fossil fuels, the development of efficient long term energy storage methods seems crucial for a faster transition to a net-zero greenhouse gas emissions EU economy. Power-to-X methods are promising due to their negligible discharge rate but up to now all the efforts have been based on the use of H2 obtained by electrolysis, and the TEAs have shown that the high cost of the electrolysers hinders greatly its possibilities of industrial use.
EffiTorch aims at developing an alternative breakthrough technology for Power-to-X based on the direct splitting of CO2, using an ultra-high temperature thermal plasma, with the simultaneous valorisation of low value bio-waste, leading to the efficient production of syngas. EffiTorch aims to reach carbon efficiencies higher than 90% and energy efficiencies higher than 60%, outperforming the best solutions available presently.
Some of the research groups in Effitorch have a vast experience in CO2 splitting using Microwave (MW) plasma torches. Nevertheless, recently a compound approach that combines CO2 splitting by thermal plasmas with a quenching using the very endothermic reverse Bouduard reaction (RBR) has been developed in China that vastly improves the promising results obtained in the splitting of CO2 , while solving one of the yet unresolved issues, that of the efficient separation of the gases obtained.
EffiTorch aims to explore the possibilities offered by a much improved version of the experimental set-ups used by the Chinese groups, including additional sophistications like the ultrasonic atomization of a bio-oil obtained by Hydrothermal Liquefaction (HTL) from sewage sludge, the use of high temperature reactors with plasma confinement and the implementation of a secondary heating of the plasma by induction with HF frequency (100-400 KHz), that could improve the energy efficiency and reduce costs.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback