Options
Akronym
Pfahldesign I
Projekt Titel
Holistic approach for the design of single piles and pile groups under cyclic loading
Förderkennzeichen
GR 1024/37-1
Aktenzeichen
945.03-870
Startdatum
September 1, 2019
Enddatum
October 31, 2022
Gepris ID
Loading...
The longterm load-displacement behaviour of piles under cyclic axial and lateral loading is very meaningful for the design of pile foundations. The prediction of this behaviour is linked with large uncertainties due to different kinds of cyclic loading as well as a large number of load cycles compared with conventional engineering structures. There is a need of a design approach being able to cover the soil behaviour under cyclic and high-cyclic loading and the specific behaviour of pile constructions. Existing design approaches show significant uncertainties already for monotonic loading. The major objective of the research project is the further development of a design approach based on an existing subgrade reaction mmethod called SRMHYP, that is currently designed for lateral cyclic loaded single piles in sand. This model is planned to cover the following cases at the end of the project: single piles and pile groups, sand and clay, cyclic and high-cyclic axial and lateral loading, soil stiffness for small and large deformation, rate-independent behaviour of sand and rate-dependent behaviour of clay, effects due to pile installation and set-up. This extended model will be validated by means of centrifuge tests, numerical simulations, and existing results of field tests. All planned experiments, models and numerical simulations are designed for two different model soils, namely a fine uniform silica sand and a kaolin clay representing non-cohesive and cohesive soils. The results of the laboratory tests on sand and kaolin with cyclic loading are used as input parameters for the SRMHYP model, for further development of a stress-strain model for kaolin, for further development of high-cycle accumulation models for sand and clay, and for calibration of hypoplastic and visco-hypoplastic models for sand and clay. The results of the centrifuge tests on cyclic loaded piles in sand and clay under defined conditions are used to validate the SRMHYP model, and additionally the numerical simulations, because the tests are carried out under a realistic stress level. The numerical simulations of piles under cyclic and high-cyclic loading are based on the continuum approach and the FEM. Therefore, the further developed of the stress-strain model for clay and the accumulation models for sand/clay mentioned above are applied. Additional work on the contact model for the contact surface pile/soil as well as work on the user subroutines for the FE-program are necessary. The results of the numerical simulations serve as a basis for the abstraction of the simpler and less computer consuming SRMHYP model. The simulation models are validated by means of results of centrifuge tests and results from field tests.