TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Research Data
  4. MRI-Validated CFD-DEM Simulation of Bubbling Fluidized Beds: Drag Model Selection and Computational Speedup via Recurrence-Based CFD
 
Options

MRI-Validated CFD-DEM Simulation of Bubbling Fluidized Beds: Drag Model Selection and Computational Speedup via Recurrence-Based CFD

Citation Link: https://doi.org/10.15480/882.15949
Type
Experimental Data
Simulation Data
Source Code
Video
Measurement and Test Data
Compiled Data
Version
v1
Date Issued
2025-10-06
Author(s)
Asif, Shaik  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Researcher
Asif, Shaik  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Pietsch-Braune, Swantje  orcid-logo
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Heinrich, Stefan  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Pirker, Stefan  
Özdemir, Melis
Prozessbildgebung V-10  
Adrian, Muhammad  
Prozessbildgebung V-10  
Penn, Alexander  orcid-logo
Prozessbildgebung V-10  
Data Curator
Asif, Shaik  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Data Collector
Asif, Shaik  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Contact
Asif, Shaik  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Language
English
DOI
https://doi.org/10.15480/882.15949
TORE-URI
https://hdl.handle.net/11420/57789
Abstract
MRI-Validated CFD-DEM and rCFD Dataset for Gas-Solid Fluidized Beds

This comprehensive research dataset provides complete computational and experimental data for validating coupled CFD-DEM (Computational Fluid Dynamics - Discrete Element Method) simulations and recurrence-based CFD (rCFD) predictions of gas-solid fluidized beds. The repository contains CFD-DEM simulation cases for four drag models (Beetstra, DiFelice, Gidaspow, Koch-Hill), rCFD time-extrapolation implementations achieving 100-1000× computational speedup, MRI experimental measurements of bubble dynamics in poppy seed fluidization, automated post-processing workflows, and quantitative validation results. This dataset enables researchers to reproduce published results, validate their own CFD-DEM models against MRI experimental data, develop and benchmark rCFD methodologies for real-time multiphase flow predictions, optimize drag model selection for fluidized bed applications, and apply advanced image processing and bubble detection algorithms. The data follows FAIR principles with open formats (CSV, OpenFOAM, Python scripts), comprehensive documentation in eight README files, complete provenance from CAD geometry to validation results, and example workflows for researchers, students, and engineers working with fluidized bed systems, particle technology, and multiphase flow simulations.
Subjects
CFD-DEM
rCFD
fluidized bed
MRI validation
drag models
bubble dynamics
recurrence CFD
OpenFOAM
LIGGGHTS
multiphase flow
DDC Class
660.284: Chemical Reactors
Funding(s)
SFB 1615 - Teilprojekt C04: SMARTe kontinuierlich betriebene Wirbelschicht zur Sprühgranulation mit selbstregulierender Verweilzeitverteilung  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
More Funding Information
Deutsche Forschungsgemeinschaft (DFG) – SFB 1615 – 503850735
License
https://creativecommons.org/licenses/by-nc/4.0/
No Thumbnail Available
Name

TORE_REPOSITORY_DESCRIPTION.md

Size

17.44 KB

Format

Markdown

No Thumbnail Available
Name

TORE_FluidizedBed_MRI_CFDEM_rCFD.7z

Size

71.73 MB

Format

Unknown

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback