TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Research Data
  4. Robot Localization Failure Prediction Dataset
 
Options

Robot Localization Failure Prediction Dataset

Citation Link: https://doi.org/10.15480/882.15836
Type
Simulation Data
Date Issued
2025-09-05
Author(s)
Knitt, Markus 
Technische Logistik W-6  
Thakkar, Manav Bhavesh  
Hamburg University of Technology  
Maroofi, Sean 
Technische Logistik W-6  
Rose, Hendrik Wilhelm 
Technische Logistik W-6  
Braun, Philipp Maximilian  orcid-logo
Technische Logistik W-6  
Contact
Knitt, Markus
Technische Logistik W-6  
Language
English
DOI
https://doi.org/10.15480/882.15836
TORE-URI
https://hdl.handle.net/11420/57225
Abstract
This repository contains a synthetic dataset designed for training and evaluating predictive localization monitoring models for autonomous mobile robots, specifically focusing on LiDAR-based particle filter localization (Adaptive Monte Carlo Localization, AMCL). The dataset is generated using NVIDIA Isaac Sim and includes 21 ROS 2 rosbags, capturing diverse scenarios with localization estimates, ground-truth poses, sensor data (LiDAR and odometry), and automatically labeled failure cases. The dataset is intended to support research in proactive fault detection for ground robots navigating in dynamic and challenging environments, as described in the paper "Synthetic Datasets for Data-Driven Localization Monitoring".

The dataset comprises 417,185 labeled samples across 21 experiment runs, with a failure rate of 23.1% (96,315 failure instances and 320,870 nominal instances). Experiments were conducted in seven distinct environments:
- Warehouse: A large, prebuilt environment with aisles, storage racks, and handling equipment, mimicking real-world warehouse settings.
- Symmetric Maps (1–3): Three small-scale environments with symmetrical layouts to induce localization confusion due to repetitive structures.
- Asymmetric Maps (1–3): Three small-scale environments with asymmetrical layouts for varied localization challenges.
Each environment was tested under three obstacle configurations:
- Dynamic Only: 25 spherical obstacles (representing humans, robots, or industrial trucks) with randomized trajectories.
- Static Only: Manually placed static obstacles (cubes) not included in the navigational map.
- Combined (Dynamic + Static): Both dynamic and static obstacles.
Subjects
robot localization
predictive monitoring
data-driven modeling
machine learning
self-localization
DDC Class
629.892: Robot
006.3: Artificial Intelligence
Funding(s)
Automatische Generierung von Modellen für Prädikation, Testen und Monitoring cyber-physischer Systeme  
Funding Organisations
Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)  
License
https://creativecommons.org/licenses/by/4.0/
No Thumbnail Available
Name

momo_navigation.zip

Size

147.53 MB

Format

ZIP

No Thumbnail Available
Name

README.md

Size

6.3 KB

Format

Markdown

No Thumbnail Available
Name

USD_files.zip

Size

946.23 MB

Format

ZIP

No Thumbnail Available
Name

preprocessed_data.zip

Size

2.29 GB

Format

ZIP

No Thumbnail Available
Name

info.csv

Size

1.92 KB

Format

CSV

No Thumbnail Available
Name

rec_20250821_104113.zip

Size

3.47 GB

Format

ZIP

No Thumbnail Available
Name

rec_20250821_132354.zip

Size

3.38 GB

Format

ZIP

No Thumbnail Available
Name

rec_20250821_141846.zip

Size

3.08 GB

Format

ZIP

No Thumbnail Available
Name

rec_20250821_151429.zip

Size

3.07 GB

Format

ZIP

No Thumbnail Available
Name

rec_20250822_123916.zip

Size

3.39 GB

Format

ZIP

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback