TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Research Data
  4. Supplementary Data for the Paper: “Deep Learning for Restoring MPI System Matrices Using Simulated Training Data”
 
Options

Supplementary Data for the Paper: “Deep Learning for Restoring MPI System Matrices Using Simulated Training Data”

Citation Link: https://doi.org/10.15480/882.16265
Type
Dataset
Date Issued
2025-12-11
Author(s)
Tsanda, Artyom  
Biomedizinische Bildgebung E-5  
Reiß, Sarah  
Biomedizinische Bildgebung E-5  
Scheffler, Konrad  
Biomedizinische Bildgebung E-5  
Boberg, Marija  orcid-logo
Biomedizinische Bildgebung E-5  
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
Contact
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
Language
English
DOI
https://doi.org/10.15480/882.16265
TORE-URI
https://hdl.handle.net/11420/59320
Is Supplemented By
https://github.com/ibiResearch/mpi-sm-restoration
Is Supplement To
https://www.arxiv.org/abs/2511.23251
Cites
10.1016/j.dib.2019.104971
10.1088/1361-6560/ad5828
10.1109/TMI.2018.2875829
10.1109/TCI.2024.3490381
Abstract
This dataset provides the materials necessary to reproduce the paper “Deep Learning for Restoring MPI System Matrices Using Simulated Training Data.” It includes the simulation parameters used to generate a dataset of simulated system matrices, the corresponding noise, the trained models, and the real measurements used for validation. The code is available at: github.com/IBIResearch/mpi-sm-restoration.
Subjects
Magnetic Particle Imaging
System Matrix Recovery
Machine Learning
Image Restoration
DDC Class
006.3: Artificial Intelligence
Funding(s)
SFB 1615 - Teilprojekt B03: Magnetresonanzbildgebung von großräumigen mehrphasigen und reaktiven Strömungssystemen  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
More Funding Information
This project is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1615 – 503850735.
License
https://creativecommons.org/licenses/by/4.0/
Technical information
Dataset License and Attribution Requirements

This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Users are free to share, redistribute, and adapt the data for any purpose, provided that appropriate credit is given as required by the license.

To clarify what constitutes appropriate credit for specific parts of this dataset, please include the corresponding citation(s) listed below when your work makes use of data with the indicated name(s).
If you use multiple files or all files from the dataset, please cite all applicable publications.

Name-Specific Attribution Requirements:
1. Files starting with "measurements__snake"
If you use files with this prefix, please cite:
@article{maas_eq_model,
author = {Maass, Marco and Kluth, Tobias and Droigk, Christine and Albers, Hannes and Scheffler, Konrad and Mertins, Alfred and Knopp, Tobias},
title = {Equilibrium Model With Anisotropy for Model-Based Reconstruction in Magnetic Particle Imaging},
year = {2024},
volume = {10},
pages = {1588--1601},
journal = {IEEE Transactions on Computational Imaging},
publisher = {IEEE},
doi = {10.1109/TCI.2024.3490381}
}

2. Files starting with "measurements__resolution"
If you use files with this prefix, please cite:
@article{knopp_openmpi,
title = {OpenMPIData: An initiative for freely accessible magnetic particle imaging data},
author = {Knopp, Tobias and Szwargulski, Patryk and Griese, Florian and Gr{\"a}ser}, Matthias,
journal = {Data in Brief},
volume = {28},
pages = {104971},
year = {2020},
issn = {2352-3409},
doi = {10.1016/j.dib.2019.104971},
}

3. Files starting with "measurements__spiral"
If you use files with this prefix, please cite:
@article{mohn_resotran,
title = {Characterization of the clinically approved MRI tracer resotran for magnetic particle imaging in a comparison study},
author = {Mohn, Fabian and Scheffler, Konrad and Ackers, Justin and Weimer, Agnes and Wegner, Franz and Thieben, Florian and Ahlborg, Mandy and Vogel, Patrick and Graeser, Matthias and Knopp, Tobias},
journal = {Physics in Medicine \& Biology},
volume = {69},
number = {13},
pages = {135014},
publisher = {IOP Publishing},
doi = {10.1088/1361-6560/ad5828},
year = {2024},
}

4. Files starting with "measurements__rectangle"
If you use files with this prefix, please cite:
@ARTICLE{szwargulski_multipatch,
author={Szwargulski, Patryk and M{\"o}ddel, Martin and Gdaniec, Nadine and Knopp, Tobias},
journal={IEEE Transactions on Medical Imaging},
title={Efficient Joint Image Reconstruction of Multi-Patch Data Reusing a Single System Matrix in Magnetic Particle Imaging},
year={2019},
volume={38},
number={4},
pages={932-944},
doi={10.1109/TMI.2018.2875829}
}

5. Any other file
If you use any file other than from 1-4, please cite:
@misc{tsanda_deep_2025,
title = {Deep {Learning} for {Restoring} {MPI} {System} {Matrices} {Using} {Simulated} {Training} {Data}},
url = {http://arxiv.org/abs/2511.23251},
doi = {10.48550/arXiv.2511.23251},
urldate = {2025-12-02},
publisher = {arXiv},
author = {Tsanda, Artyom and Reiss, Sarah and Scheffler, Konrad and Boberg, Marija and Knopp, Tobias},
month = dec,
year = {2025},
}
No Thumbnail Available
Name

README

Type

Md

Size

8.14 KB

Format

Unknown

No Thumbnail Available
Name

flatten

Type

Sh

Size

1.61 KB

Format

Unknown

No Thumbnail Available
Name

measurements__noise__2D__noise

Type

Npy

Size

142.46 GB

Format

Unknown

No Thumbnail Available
Name

measurements__noise__3D__chunk_1

Type

Npy

Size

120.38 GB

Format

Unknown

No Thumbnail Available
Name

measurements__noise__3D__chunk_2

Type

Npy

Size

120.38 GB

Format

Unknown

No Thumbnail Available
Name

measurements__noise__3D__chunk_3

Type

Npy

Size

120.38 GB

Format

Unknown

No Thumbnail Available
Name

measurements__noise__3D__chunk_4

Type

Npy

Size

120.38 GB

Format

Unknown

No Thumbnail Available
Name

measurements__noise__3D__chunk_5

Type

Npy

Size

120.38 GB

Format

Unknown

No Thumbnail Available
Name

measurements__rectangle__mask

Type

Mdf

Size

13.92 KB

Format

Unknown

No Thumbnail Available
Name

measurements__rectangle__sm_measured

Type

Mdf

Size

8.53 GB

Format

Unknown

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback