TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Research Data
  4. Machine Learning Models and Data for the Application of Machine Learning in Predicting Quality Parameters in Metal Material Extrusion (MEX/M)
 
Options

Machine Learning Models and Data for the Application of Machine Learning in Predicting Quality Parameters in Metal Material Extrusion (MEX/M)

Citation Link: https://doi.org/10.15480/882.14880
Type
Compiled Data
Date Issued
2025-03-10
Author(s)
Asami, Mohammad Karim  orcid-logo
Laser- und Anlagensystemtechnik T-2  
Kuehne, Maxim  
Laser- und Anlagensystemtechnik T-2  
Researcher
Röver, Tim  orcid-logo
Emmelmann, Claus  orcid-logo
Language
English
DOI
https://doi.org/10.15480/882.14880
TORE-URI
https://hdl.handle.net/11420/54722
Abstract
The supplementary data includes detailed information on machine learning (ML) models, specifically MLP and Bagging, and the datasets used to predict surface roughness and density in metal extrusion additive manufacturing (MEX/M) components. Leveraging experimental data, these models incorporate input parameters like layer thickness, print velocity, infill, overhang angle, and sinter profile. Demonstrating a prediction accuracy ranging from 39% to 97%, the data underscores the models' effectiveness in optimizing MEX/M processes, enhancing quality control, and improving design efficiency, particularly for complex geometrical structures.
Subjects
Additive Manufacturing (AM)
Machine learning (ML)
Material extrusion of metals (MEX/M)
Design for Additive Manufacturing (DfAM)
DDC Class
006.3: Artificial Intelligence
620.1: Engineering Mechanics and Materials Science
License
https://creativecommons.org/licenses/by/4.0/
No Thumbnail Available
Name

README.docx

Size

17.63 KB

Format

Microsoft Word XML

No Thumbnail Available
Name

complementary_data.zip

Size

28.88 KB

Format

ZIP

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback