TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Research Data
  4. Open research data: Sensor Data for ML based Indoor Positioning
 
Options

Open research data: Sensor Data for ML based Indoor Positioning

Citation Link: https://doi.org/10.15480/882.9563
Type
Measurement and Test Data
Date Issued
2024-05-07
Author(s)
Venzke, Marcus  orcid-logo
Telematik E-17  
Saigol, Ahmad Nadeem  
Studiendekanat Maschinenbau  
Manikku Badu, Nisal Hemadasa  
Telematik E-17  
Language
English
DOI
10.15480/882.9563
TORE-URI
https://hdl.handle.net/11420/47437
Cites
10.48550/arXiv.2308.11670
10.55432/978-1-6692-0005-5_9
Abstract
This data package contains open research data intended for machine learning from the WinOSens project. It is sensor data that was recorded by a sensor module attached to a sack truck pushed on the same path many times. It was meant to train ML models for recognizing the current position on the path. Sensor values are available for acceleration, gyration, magnetic flux density, air pressure, temperature, humidity, and the brightness of different colors. The current location of the sack truck is available as labels annotated by humans. The data is provided for 3 paths that cover indoor and outdoor areas.
Subjects
Open research data
Indoor positioning
Sensor data
Machine learning training data
Multivariate time series classification
WinOSens
MLE@TUHH
DDC Class
620: Engineering
004: Computer Sciences
Funding(s)
KMU-innovativ - Verbundprojekt WinOSens: Wartungs- und infrastrukturarme Objektlokalisierung zur Steigerung von Effizienz und Transparenz in industriellen Logistprozessen mithilfe des machschinellen Lernens in eingebetteten Sensorsystemen  
Funding Organisations
Bundesministerium für Bildung und Forschung (BMBF)  
License
https://creativecommons.org/licenses/by/4.0/
Technical information
Detailed information describing the data package is given in file Readme.pdf contained in the ZIP file.
No Thumbnail Available
Name

Sensor_data_for_ML_based_indoor_positioning.zip

Size

83.54 MB

Format

ZIP

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback