TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Advances in soil evaporation physics-A review
 
Options

Advances in soil evaporation physics-A review

Publikationstyp
Journal Article
Date Issued
2013-11
Sprache
English
Author(s)
Or, Dani  
Lehmann, Peter  
Shahraeeni, Ebrahim  
Shokri, Nima  
TORE-URI
http://hdl.handle.net/11420/10686
Journal
Vadose zone journal  
Volume
12
Issue
4
Citation
Vadose Zone Journal 12 (4): (2013-11
Publisher DOI
10.2136/vzj2012.0163
Scopus ID
2-s2.0-84887749557
Globally, evaporation consumes about 25% of solar energy input and is a key hydrologic driver with 60% of terrestrial precipitation returning to the atmosphere via evapotranspiration. Quantifying evaporation is important for assessing changes in hydrologic reservoirs and surface energy balance and for many industrial and engineering applications. Evaporation dynamics from porous media reflect interactions between internal liquid and vapor transport, energy input for phase change, and mass transfer across air boundary layer. We reviewed recent advances on resolving interactions between soil intrinsic properties and evaporation dynamics with emphasis on the roles of capillarity and wettability affecting liquid phase continuity and capillary driving forces that sustain Stage I evaporation. We show that soil water characteristics contain information for predicting the drying front depth and mass loss at the end of Stage I and thus derive predictions for regional-scale evaporative water losses from soil textural maps. We discuss the formation of secondary drying front at the onset of Stage II evaporation and subsequent diffusion-controlled dynamics. An important aspect for remote sensing and modeling involves nonlinear interactions between wet evaporating surfaces and air boundary layer above (evaporation rate is not proportional to surface water content). Using pore scale models of evaporating surfaces and vapor transport across air boundary layer, we examined the necessary conditions for maintenance of nearly constant evaporation while the surface gradually dries and the drying front recedes into the soil. These new insights could be used to improve boundary conditions for models that are based on surface water content to quantify evaporation rates.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback