Options
Periplasmic electron transfer via the c-type cytochromes Mtra and FccA of Shewanella oneidensis Mr-1
Publikationstyp
Journal Article
Date Issued
2009-12-15
Sprache
English
Volume
75
Issue
24
Start Page
7789
End Page
7796
Citation
Applied and Environmental Microbiology 75 (24): 7789-7796 (2009-12)
Publisher DOI
Scopus ID
PubMed ID
19837833
Publisher
Soc.
Dissimilatory microbial reduction of insoluble Fe(III) oxides is a geochemically and ecologically important process which involves the transfer of cellular, respiratory electrons from the cytoplasmic membrane to insoluble, extracellular, mineral-phase electron acceptors. In this paper evidence is provided for the function of the periplasmic fumarate reductase FccA and the decaheme c-type cytochrome MtrA in periplasmic electron transfer reactions in the gammaproteobacterium Shewanella oneidensis. Both proteins are abundant in the periplasm of ferric citrate-reducing S. oneidensis cells. In vitro fumarate reductase FccA and c-type cytochrome MtrA were reduced by the cytoplasmic membrane-bound protein CymA. Electron transfer between CymA and MtrA was 1.4-fold faster than the CymA-catalyzed reduction of FccA. Further experiments showing a bidirectional electron transfer between FccA and MtrA provided evidence for an electron transfer network in the periplasmic space of S. oneidensis. Hence, FccA could function in both the electron transport to fumarate and via MtrA to mineral-phase Fe(III). Growth experiments with a ΔfccA deletion mutant suggest a role of FccA as a transient electron storage protein.
DDC Class
570: Biowissenschaften, Biologie
600: Technik