TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Influence of liquid layers on energy absorption during particle impact
 
Options

Influence of liquid layers on energy absorption during particle impact

Publikationstyp
Journal Article
Date Issued
2009-08
Sprache
English
Author(s)
Antonyuk, Sergiy  
Heinrich, Stefan  
Deen, Niels G.  
Kuipers, Hans  
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
TORE-URI
http://hdl.handle.net/11420/13763
Journal
Particuology  
Volume
7
Issue
4
Start Page
245
End Page
259
Citation
Particuology 7 (4): 245-259 (2009-08)
Publisher DOI
10.1016/j.partic.2009.04.006
Scopus ID
2-s2.0-70149117257
The influence of the thickness of a covering liquid layer and its viscosity as well as the impact velocity on energy loss during the normal impact on a flat steel wall of spherical granules with a liquid layer was studied. Free-fall experiments were performed to obtain the restitution coefficient of elastic-plastic γ-Al2O3 granules by impact on the liquid layer, using aqueous solutions of hydroxypropyl methylcellulose with different concentrations for variation of viscosity (1-300 mPa s). In the presence of a liquid layer, increase of liquid viscosity decreases the restitution coefficient and the minimum thickness of the liquid layer at which the granule sticks to the wall. The measured restitution coefficients were compared with experiments performed without liquid layer. In contrast to the dry restitution coefficient, due to viscous losses at lower impact velocity, higher energy dissipation was obtained. A rational explanation for the effects obtained was given by results of numerically solved force and energy balances for a granule impact on a liquid layer on the wall. The model takes into account forces acting on the granule including viscous, surface tension, capillary, contact, drag, buoyancy and gravitational forces. Good agreement between simulations and experiments has been achieved.
Subjects
Energy dissipation
Granule impact
Liquid bridge
Liquid layer
Restitution coefficient
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback