TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Orchestra: robust mesh networks through autonomously scheduled TSCH
 
Options

Orchestra: robust mesh networks through autonomously scheduled TSCH

Publikationstyp
Conference Paper
Date Issued
2015-11
Sprache
English
Author(s)
Duquennoy, Simon  
Al Nahas, Beshr  
Landsiedel, Olaf  
Watteyne, Thomas  
TORE-URI
https://hdl.handle.net/11420/53914
Start Page
337
End Page
350
Citation
SenSys 2015 - Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems; 337-350
Contribution to Conference
13th ACM Conference on Embedded Networked Sensor Systems, SenSys 2015  
Publisher DOI
10.1145/2809695.2809714
Scopus ID
2-s2.0-84962905849
Publisher
ACM
ISBN
978-1-4503-3631-4
Time slotted operation is a well-proven approach to achieve highly-reliable low-power networking through scheduling and channel hopping. It is, however, difficult to apply time slotting to dynamic networks as envisioned in the Internet of Things. Commonly, these applications do not have predefined periodic traffic patterns and nodes can be added or removed dynamically. This paper addresses the challenge of bringing TSCH (Time Slotted Channel Hopping MAC) to such dynamic networks. We focus on low-power IPv6 and RPL networks, and introduce Orchestra. In Orchestra, nodes autonomously compute their own, local schedules. They maintain multiple schedules, each allocated to a particular traffic plane (application, routing, MAC), and updated automatically as the topology evolves. Orchestra (re)computes local schedules without signaling overhead, and does not require any central or distributed scheduler. Instead, it relies on the existing network stack information to maintain the schedules. This scheme allows Orchestra to build non-deterministic networks while exploiting the robustness of TSCH. We demonstrate the practicality of Orchestra and quantify its benefits through extensive evaluation in two testbeds, on two hardware platforms. Orchestra reduces, or even eliminates, network contention. In long running experiments of up to 72 h we show that Orchestra achieves end-to-end delivery ratios of over 99.99%. Compared to RPL in asynchronous low-power listening networks, Orchestra improves reliability by two orders of magnitude, while achieving a similar latency-energy balance.
Subjects
RPL | Scheduling | TSCH | Wireless sensor network
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback