TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Operation and experimental evaluation of a 12-axis robot-based setup used for 3D-printing
 
Options

Operation and experimental evaluation of a 12-axis robot-based setup used for 3D-printing

Publikationstyp
Conference Paper
Date Issued
2020-12
Sprache
English
Author(s)
Kallai, Zsolt  orcid-logo
Dammann, Maik  orcid-logo
Schüppstuhl, Thorsten  orcid-logo
Institut
Flugzeug-Produktionstechnik M-23  
TORE-URI
http://hdl.handle.net/11420/8814
Citation
International Symposium on Robotics (ISR 2020)
Contribution to Conference
52th International Symposium on Robotics, ISR 2020  
Publisher Link
https://ieeexplore.ieee.org/abstract/document/9307447/
Scopus ID
2-s2.0-85101082718
This paper presents the operation and the experimental evaluation of a 12-axis, dual-robot-based setup, which can be used for 3D-printing of carbon fiber reinforced plastic (CFRP) parts, while taking into account their optimal fiber orientation. 3D-printing shows a great potential among the current trends of industry, as it allows the manufacturing of parts with a high-degree of design flexibility and reasonable production costs. With the expansion of the 3D-printing industry, new materials, such as CFRP are considered to be applicable. However, the conventional 3D-printing processes with layer-by-layer material deposition are not always feasible, especially not in the case of creating parts with the optimal fiber orientation. In order to provide optimal orientation for fiber placement, while meeting the industry standards, a dual-robot-based setup was designed, which provides the necessary flexibility to create CFRP parts. In this article, the relevant state of the art is shown, then the setup is presented through its main mechanical components: the robots, the print head and the PLC-based control system. This is followed by the programming procedure of the setup to create 3D-printed parts. Subsequently, an experiment is proposed to determine the accuracy and the repeatability of the experimental setup and to compare the quality of 3D-printed test objects to parts printed with a conventional 3D-printer.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback