TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Controller synthesis for input-output LPV models
 
Options

Controller synthesis for input-output LPV models

Publikationstyp
Conference Paper
Date Issued
2010
Sprache
English
Author(s)
Ali, Mukhtar  
Abbas, Hossam El-Din Mahmoud Seddik  
Werner, Herbert  
Institut
Regelungstechnik E-14  
TORE-URI
http://hdl.handle.net/11420/14803
Journal
Proceedings of the IEEE Conference on Decision & Control  
Start Page
7694
End Page
7699
Article Number
5717576
Citation
Proceedings of the IEEE Conference on Decision and Control (): 5717576 7694-7699 (2010)
Contribution to Conference
49th IEEE Conference on Decision and Control, CDC 2010  
Publisher DOI
10.1109/CDC.2010.5717576
Scopus ID
2-s2.0-79953136032
Publisher
IEEE
This paper considers the synthesis of linear parameter-varying (LPV) controllers for plant models given in input-output LPV form. For SISO systems, a method for synthesizing LPV gain-scheduled controllers in input-output form has been proposed recently, where the a priori choice of a central polynomial plays a critical role, and the synthesis problem is solved using a sum-of-squares relaxation. In this paper we propose a way of simplifying this design procedure, by replacing the sum-of-squares approach by representing the closed-loop model in polytopic input-output LPV form and then using a gradient-based optimization to solve the synthesis BMI. In this procedure the central polynomial is tuned while the closed-loop performance index is minimized over the decision variables, which include the controller parameters. The proposed method is illustrated with simulation examples.
DDC Class
600: Technik
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback