TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Convolutional transformer network for paranasal anomaly classification in the maxillary sinus
 
Options

Convolutional transformer network for paranasal anomaly classification in the maxillary sinus

Publikationstyp
Conference Paper
Date Issued
2024-02
Sprache
English
Author(s)
Bhattacharya, Debayan 
Medizintechnische und Intelligente Systeme E-1  
Behrendt, Finn  
Medizintechnische und Intelligente Systeme E-1  
Maack, Lennart  
Medizintechnische und Intelligente Systeme E-1  
Becker, Benjamin Tobias  
Beyersdorff, Dirk  
Petersen, Elina Larissa  
Petersen, Marvin  
Cheng, Bastian  
Eggert, Dennis  
Betz, Christian Stephan  
Hoffmann, Anna Sophie  
Schlaefer, Alexander  
Medizintechnische und Intelligente Systeme E-1  
TORE-URI
https://hdl.handle.net/11420/47484
Journal
Progress in Biomedical Optics and Imaging - Proceedings of SPIE  
Volume
12927
Article Number
1292717
Citation
SPIE Medical Imaging 2024
Contribution to Conference
SPIE Medical Imaging 2024  
Publisher DOI
10.1117/12.3005515
Scopus ID
2-s2.0-85191450131
Publisher
SPIE
ISBN
9781510671584
Large-scale population studies have examined the detection of sinus opacities in cranial MRIs. Deep learning methods, specifically 3D convolutional neural networks (CNNs), have been used to classify these anomalies. However, CNNs have limitations in capturing long-range dependencies across the low and high level features, potentially reducing performance. To address this, we propose an end-to-end pipeline using a novel deep learning network called ConTra-Net. ConTra-Net combines the strengths of CNNs and self-attention mechanisms of transformers to classify paranasal anomalies in the maxillary sinuses. Our approach outperforms 3D CNNs and 3D Vision Transformer (ViT), with relative improvements in F1 score of 11.68% and 53.5%, respectively. Our pipeline with ConTra-Net could serve as an alternative to reduce misdiagnosis rates in classifying paranasal anomalies.
Subjects
anomaly classification
CNN
Hybrid Network
maxillary sinus
Paranasal anomaly
Transformer
MLE@TUHH
DDC Class
004: Computer Sciences
610: Medicine, Health
620: Engineering
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback