TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Congruent families and invariant tensors
 
Options

Congruent families and invariant tensors

Publikationstyp
Book Part
Date Issued
2018
Sprache
English
Author(s)
Schwachhöfer, Lorenz  
Ay, Nihat  
Jost, Jürgen  
Vân Lê, Hông  
TORE-URI
http://hdl.handle.net/11420/10352
First published in
Springer proceedings in mathematics & statistics  
Number in series
252
Start Page
157
End Page
187
Citation
Springer Proceedings in Mathematics and Statistics 252: 157-187 (2018)
Publisher DOI
10.1007/978-3-319-97798-0_6
Scopus ID
2-s2.0-85056330084
Publisher
Springer
ISBN
978-3-319-97798-0
978-3-319-97797-3
A classical result of Chentsov states that – up to constant multiples – the only 2-tensor field of a statistical model which is invariant under congruent Markov morphisms is the Fisher metric and the only invariant 3-tensor field is the Amari–Chentsov tensor. We generalize this result for arbitrary degree n, showing that any family of n-tensors which is invariant under congruent Markov morphisms is algebraically generated by the canonical tensor fields defined in Ay, Jost, Lê, Schwachhöfer (Bernoulli, 24:1692–1725, 2018, [4]).
Subjects
Chentsov’s theorem
Congruent Markov kernel
Statistical model
Sufficient statistic
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback