TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Electrical and thermal conductivity of aerogel/epoxy composites
 
Options

Electrical and thermal conductivity of aerogel/epoxy composites

Publikationstyp
Conference Paper
Date Issued
2016-06
Sprache
English
Author(s)
Garlof, Svenja  
Mecklenburg, Matthias  
Adelung, Rainer  
Smazna, Daria  
Fiedler, Bodo  orcid-logo
Schulte, Karl  
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/5881
Citation
European Conference on Composite Materials (ECCM): (2016-06)
Contribution to Conference
European Conference on Composite Materials, ECCM 2016  
This study investigates the electrical and thermal characteristics of two novel carbon aerogel composites containing Aerographite (AG) and a CNT foam. Aerographite of densities between 3 to 16 mg/cm3, and the CNT foam with densities of 17 and 31 mg/cm3 were prepared in the CVD process. Both aerogels were infiltrated with epoxy resin using a vacuum assisted infiltration technique that preserves the interconnected structure. The neat Aerographite showed a maximum electrical conductivity of 10.3 S/m while the CNT foam reached 1.7 S/m. In the epoxy composites the electrical conductivity of the neat materials is adopted, thus resulting in an enhancement of orders of magnitude when compared to neat epoxy. Thermal conductivity was studied using a Xenon flash method. First results show an improvement of thermal conductivity of the composite by 33 % at the low filler content of only 0.26 wt.-% for the Aerographite and of 91 % for the CNT foam at 2.7 wt.-% filler content.
Subjects
Aerographite
Carbon aerogel
Electrical conductivity
Interpenetrating structure
Thermal conductivty
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback