TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Closed-loop identification of LPV models using cubic splines with application to an arm-driven inverted pendulum
 
Options

Closed-loop identification of LPV models using cubic splines with application to an arm-driven inverted pendulum

Publikationstyp
Conference Paper
Date Issued
2010
Sprache
English
Author(s)
Boonto, Sudchai  
Werner, Herbert  
Institut
Regelungstechnik E-14  
TORE-URI
http://hdl.handle.net/11420/14800
Start Page
3100
End Page
3105
Article Number
5531139
Citation
Proceedings of the 2010 American Control Conference, ACC 2010 : Baltimore, Maryland, USA, 30 June - 2 July 2010. - Piscataway, NJ, 2010. - 5531139 3100-3105 (2010)
Publisher DOI
10.1109/acc.2010.5531139
Scopus ID
2-s2.0-77957773476
Publisher
IEEE
A method for the identification of MIMO input-output LPV models in closed-loop is proposed. The model is assumed to display both linear and non-linear behavior in which the latter is dependent on the scheduling parameters, and cubic splines are used to represent the non-linear dependence. For the estimation of both linear and non-linear parameters, the separable least square method is employed. The linear parameters are obtained by a least square identification algorithm, while the non-linear parameters are obtained using a recursive Levenberg-Marquardt algorithm. To identify such a model in closed-loop, we use a non-linear version of a two-step method. A neural network ARX model will be used in the first step for two purposes. Firstly, to generate noise-free input signal to get an unbiased model and secondly to generate noise-free scheduling signal for consistent identification. The proposed method is applied to an arm-driven inverted pendulum. The resulting model is compared with a linear time-invariant model, and with an LPV model that depends polynomially on the scheduling parameters. Experimental results indicate that the cubic spline model outperforms the other ones in terms of accuracy. © 2010 AACC.
DDC Class
600: Technik
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback