TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Moisture distribution in fluidized beds with liquid injection
 
Options

Moisture distribution in fluidized beds with liquid injection

Publikationstyp
Journal Article
Date Issued
2011-07
Sprache
English
Author(s)
Fries, Lennart  
Dosta, Maksym  
Antonyuk, Sergiy  
Heinrich, Stefan  
Palzer, Stefan  
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
TORE-URI
http://hdl.handle.net/11420/13729
Journal
Chemical engineering & technology  
Volume
34
Issue
7
Start Page
1076
End Page
1084
Citation
Chemical Engineering and Technology 34 (7): 1076-1084 (2011-07)
Publisher DOI
10.1002/ceat.201100132
Scopus ID
2-s2.0-79959735121
Coupled discrete element method-computational fluid dynamics (DEM-CFD) simulations have been performed to study the fluid and particle dynamics in a fluidized-bed granulator on the scale of individual particles. Simulation of the gas and particle dynamics is combined with heat and mass transfer mechanisms, as the moisture distribution is a key parameter for the functionality of a fluidized-bed spray granulator. The model allows monitoring the moisture content and temperature of each individual particle as well as the temperature and humidity of the surrounding gas phase. A novel modeling approach is presented to describe the process dynamics of a fluidized bed in full detail for a reference time interval using coupled DEM-CFD simulations. The motion profile of gas and particles is extrapolated to larger time scales and used for the calculation of heat and mass transfer. Through this multiscale approach, a step forward is taken towards a physically based description of the microprocesses in granulation.
Subjects
Computational fluid dynamics
Discrete element modeling
Fluidized-bed spray granulation
Moisture distribution
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback