Options
Valorization of urban street tree pruning residues in biorefineries by steam refining : conversion into fibers, emulsifiers, and biogas
Citation Link: https://doi.org/10.15480/882.3899
Publikationstyp
Journal Article
Date Issued
2021-11-15
Sprache
English
TORE-DOI
Journal
Volume
9
Issue
November
Article Number
779609
Citation
Frontiers in Chemistry 9 : 779609 (2021)
Publisher DOI
Scopus ID
Publisher
Frontiers Media
Peer Reviewed
true
Street tree pruning residues are a widely available and currently undervalorized bioresource. Their utilization could help alleviate an increasing biomass shortage and offset costs of the pruning process for the municipalities. In this work, a holistic valorization pathway of pruning residues leading to fibers, oligosaccharides, biogas, and compost is presented. For this, representative mixtures of tree pruning materials from the most prevalent street tree genera (oak, linden, maple) found in Hamburg (Germany) were prepared by shredding and cleaning procedures. Collection of sample material was performed in summer and winter to account for seasonality. A steam-based
fractionation was conducted using treatment severities ranging from log R₀ = 2.5 to 4.0. At the highest severity, a fiber yield of around 66%, and liquor yield of 26–30% was determined. The fibers were evaluated with respect to their properties for paper product applications, with higher treatment severities leading to higher paper strengths. From the oligosaccharide-rich liquor, emulsions were created, which showed promising stability properties over 8 weeks of storage. The liquors and the rejects from the material preparation also displayed good potential for biomethane production. Overall, the differences between material collected in summer and winter were found to be small, indicating the possibility for a year-round utilization of pruning residues. For the presented utilization pathway, high severity treatments were the most promising, featuring a high liquor yield, good biomethane potential, and the highest paper strengths.
fractionation was conducted using treatment severities ranging from log R₀ = 2.5 to 4.0. At the highest severity, a fiber yield of around 66%, and liquor yield of 26–30% was determined. The fibers were evaluated with respect to their properties for paper product applications, with higher treatment severities leading to higher paper strengths. From the oligosaccharide-rich liquor, emulsions were created, which showed promising stability properties over 8 weeks of storage. The liquors and the rejects from the material preparation also displayed good potential for biomethane production. Overall, the differences between material collected in summer and winter were found to be small, indicating the possibility for a year-round utilization of pruning residues. For the presented utilization pathway, high severity treatments were the most promising, featuring a high liquor yield, good biomethane potential, and the highest paper strengths.
DDC Class
570: Biowissenschaften, Biologie
600: Technik
620: Ingenieurwissenschaften
Funding Organisations
More Funding Information
This work was supported by the ERA-NET FACCE-SURPLUS FLEXIBI Project, funded via project manager PTJ (Grant numbers 031B0610A and 031B0610B) by the Federal Ministry of Education and Research (BMBF).
Publication version
publishedVersion
Loading...
Name
fchem-09-779609.pdf
Size
2.76 MB
Format
Adobe PDF