TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Evaluation of a Semantic Field-Based Approach to Identifying Text Sections about Specific Topics
 
Options

Evaluation of a Semantic Field-Based Approach to Identifying Text Sections about Specific Topics

Publikationstyp
Conference Paper
Date Issued
2019
Sprache
English
Author(s)
Vauth, Michael  
Adelmann, Benedikt  
Andresen, Melanie  
Begerow, Anke  
Franken, Lina  
Gius, Evelyn  
Other Contributor
Universtität Hamburg  
Institut
Humanities B-6  
TORE-URI
http://hdl.handle.net/11420/4538
Citation
DH 2019 - Digital Humanities conference (2019)
Contribution to Conference
DH 2019 - Digital Humanities conference 2019  
With the increasing availability of large corpora, humanist scholars gain opportunities to choose their material in a more data-driven way. How can we identify texts or text sections relevant to our research question if we abandon prior knowledge as a determining factor? In this paper, we explore the potential of semantic fields for finding text sections about a topic of interest.
Subjects
Textanalyse
Hermeutik
Digital Humanities
DDC Class
400: Sprachwissenschaft, Linguistik
Funding(s)
Automatisierte Modellierung hermeneutischer Prozesse - Der Einsatz von Annotationen für sozial- und geisteswissenschaftliche Analysen im Gesundheitsbereich: LFF-FV 35  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback