TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Multiscale simulation of agglomerate breakage in fluidized beds
 
Options

Multiscale simulation of agglomerate breakage in fluidized beds

Publikationstyp
Journal Article
Date Issued
2013-03-13
Sprache
English
Author(s)
Dosta, Maksym  
Antonyuk, Sergiy  
Heinrich, Stefan  
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
TORE-URI
http://hdl.handle.net/11420/6477
Journal
Industrial & engineering chemistry research  
Volume
52
Issue
33
Start Page
11275
End Page
11281
Citation
Industrial and Engineering Chemistry Research 33 (52): 11275-11281 (2013)
Publisher DOI
10.1021/ie400244x
Scopus ID
2-s2.0-84883158783
Publisher
American Chemical Society
In this contribution a multiscale simulation strategy is proposed which is able to simulate an industrial scale fluidized bed spray agglomeration process considering the breakage of agglomerates. A set of novel simulation approaches and hierarchically distributed models were developed and implemented into the multiscale simulation environment for solids processes. The population balance model (PBM) was used for the simulation of the global production process on the macroscale. On the microscale the coupling between discrete element method (DEM) and the computational fluid dynamics (CFD) system was employed to calculate the particle dynamics in the granulator. The material-based parameters for the PBM, such as breakage probability and breakage function, were derived from the process description on the lowest hierarchical scale, where the agglomerate was described as a system of primary particles bonded by a solid binder. © 2013 American Chemical Society.
DDC Class
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback