TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Frictional dissipation in elastically dissimilar oscillating Hertzian contacts
 
Options

Frictional dissipation in elastically dissimilar oscillating Hertzian contacts

Publikationstyp
Journal Article
Date Issued
2013-03-26
Sprache
English
Author(s)
Stingl, Bernhard  
Ciavarella, Michele  
Hoffmann, Norbert  orcid-logo
Institut
Strukturdynamik M-14  
TORE-URI
http://hdl.handle.net/11420/6697
Journal
International journal of mechanical sciences  
Volume
72
Start Page
55
End Page
62
Citation
International Journal of Mechanical Sciences (72): 55-62 (2013)
Publisher DOI
10.1016/j.ijmecsci.2013.03.012
Scopus ID
2-s2.0-84878596025
Publisher
Elsevier
We consider the problem of a cyclic Hertzian indentation between elastically dissimilar materials. In the case of loading, the problem was solved by Spence in a series of seminal papers, where he proved a relationship between the solution for a rigid square-shaped punch, to that for a power-law indenter. For example, the stick area is a constant ratio of the contact area, independently on the shape of the punch. "Unfortunately", on unloading, many of the simple properties of the self-similar loading case are lost, there is a complicated development of an external region of slip which cycles in the two directions (forward and back-slip), and an inner region which continues to slip in the forward direction of the first loading cycle. However, this inner region gradually disappears, and further cyclic loading generates a convergence to a steady state solution which involves residual "locked-in" tangential slip displacements in a permanent stick zone, provided the contact is not fully unloaded. Dissipation in the steady state therefore occurs only in the external region of slip, and we provide some results for the energy dissipation per cycle, as a function of the governing parameters: coefficient of friction, Dundurs' dissimilarity constant, normal load amplitude. We also show the likely independence of energy dissipation on initial conditions, limited to the possible scenario of overloading. It is seen that dependence of energy dissipation per cycle on load amplitude is closer to quadratic than to cubic, and this may explain some experimental findings which so far were not expected from oscillatory loading of elastically similar half-spaces.
Subjects
Contact mechanics
Cyclic loading
Dissipation in joints
Hertzian contact
DDC Class
530: Physik
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback