TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Voting and bribing in single-exponential time
 
Options

Voting and bribing in single-exponential time

Publikationstyp
Conference Paper
Date Issued
2017-03
Sprache
English
Author(s)
Knop, Dušan  
Koutecký, Martin  
Mnich, Matthias  
TORE-URI
http://hdl.handle.net/11420/4569
First published in
Leibniz international proceedings in informatics  
Number in series
66
Article Number
46
Citation
Leibniz international proceedings in informatics 66: 46 (2017)
Contribution to Conference
34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)  
Publisher DOI
10.4230/LIPIcs.STACS.2017.46
ArXiv ID
1812.01852
We introduce a general problem about bribery in voting systems. In the R-Multi-Bribery problem, the goal is to bribe a set of voters at minimum cost such that a desired candidate wins the manipulated election under the voting rule R. Voters assign prices for withdrawing their vote, for swapping the positions of two consecutive candidates in their preference order, and for perturbing their approval count for a candidate. As our main result, we show that R-Multi-Bribery is fixed-parameter tractable parameterized by the number of candidates for many natural voting rules R, including Kemeny rule, all scoring protocols, maximin rule, Bucklin rule, fallback rule, SP-AV, and any C1 rule. In particular, our result resolves the parameterized of R-Swap Bribery for all those voting rules, thereby solving a long-standing open problem and "Challenge #2" of the 9 Challenges in computational social choice by Bredereck et al. Further, our algorithm runs in single-exponential time for arbitrary cost; it thus improves the earlier double-exponential time algorithm by Dorn and Schlotter that is restricted to the unit-cost case for all scoring protocols, the maximin rule, and Bucklin rule.
DDC Class
004: Informatik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback