Options
Hitting long directed cycles is fixed-parameter tractable
Citation Link: https://doi.org/10.15480/882.2883
Publikationstyp
Conference Paper
Publikationsdatum
2020
Sprache
English
Institut
TORE-URI
First published in
Number in series
168
Article Number
59
Citation
International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Contribution to Conference
Publisher DOI
Scopus ID
ArXiv ID
Publisher
Schloss Dagstuhl Leibniz-Zentrum für Informatik
In the Directed Long Cycle Hitting Set problem we are given a directed graph G, and the task is to find a set S of at most k vertices/arcs such that G − S has no cycle of length longer than `. We show that the problem can be solved in time 2O(`6+`k3 log k+k5 log k log `) · nO(1), that is, it is fixed-parameter tractable (FPT) parameterized by k and `. This algorithm can be seen as a far-reaching generalization of the fixed-parameter tractability of Mixed Graph Feedback Vertex Set [Bonsma and Lokshtanov WADS 2011], which is already a common generalization of the fixed-parameter tractability of (undirected) Feedback Vertex Set and the Directed Feedback Vertex Set problems, two classic results in parameterized algorithms. The algorithm requires significant insights into the structure of graphs without directed cycles of length longer than and can be seen as an exact version of the approximation algorithm following from the Erdős-Pósa property for long cycles in directed graphs proved by Kreutzer and Kawarabayashi [STOC 2015]. © Alexander Göke, Dániel Marx, and Matthias Mnich; licensed under Creative Commons License CC-BY 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Schlagworte
directed graphs
directed feedback vertex set
circumference
DDC Class
510: Mathematik
Loading...
Name
LIPIcs-ICALP-2020-59.pdf
Size
637.93 KB
Format
Adobe PDF