TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. RegularizedLeastSquares.jl: modality agnostic Julia package for solving regularized least squares problems
 
Options

RegularizedLeastSquares.jl: modality agnostic Julia package for solving regularized least squares problems

Citation Link: https://doi.org/10.15480/882.9524
Publikationstyp
Journal Article
Date Issued
2024-03-10
Sprache
English
Author(s)
Hackelberg, Niklas  
Biomedizinische Bildgebung E-5  
Tsanda, Artyom 
Biomedizinische Bildgebung E-5  
Grosser, Mirco  
Biomedizinische Bildgebung E-5  
Mohn, Fabian  orcid-logo
Biomedizinische Bildgebung E-5  
Scheffler, Konrad  
Biomedizinische Bildgebung E-5  
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
Möddel, Martin  orcid-logo
Biomedizinische Bildgebung E-5  
TORE-DOI
10.15480/882.9524
TORE-URI
https://hdl.handle.net/11420/47252
Journal
International journal on magnetic particle imaging  
Volume
10
Issue
1, suppl. 1
Article Number
2403028
Citation
International Journal on Magnetic Particle Imaging 10 (1, suppl. 1): 2403028 (2024)
Publisher DOI
10.18416/IJMPI.2024.2403028
Scopus ID
2-s2.0-85187475933
Publisher
Infinite Science Publishing
Image reconstruction in Magnetic Particle Imaging (MPI) is an ill-posed linear inverse problem. A standard method for solving such a problem is the regularized least squares approach, which uses, a regularization function to reduce the impact of measurement noise in the reconstructed image by leveraging prior knowledge. Various optimization algorithms, including the Kazcmarz method or the Alternating Direction Method of Multipliers (ADMM), and regularization functions, such as l2 or Fused Lasso priors have been employed. Therefore, the creation and implementation of cutting-edge image reconstruction techniques necessitate a robust and adaptable optimization framework. In this work, we present the open-source Julia package RegularizedLeastSquares.jl, which provides a large selection of common optimization algorithms and allows flexible inclusion of regularization functions. These features enable the package to achieve state-of-the-art image reconstruction in MPI.
DDC Class
610: Medicine, Health
620: Engineering
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

IJMPI-Vol10-Iss1Suppl1-684.pdf

Type

Main Article

Size

480.31 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback