TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Trajectory-based breakup modelling for dense bubbly flows
 
Options

Trajectory-based breakup modelling for dense bubbly flows

Citation Link: https://doi.org/10.15480/882.13416
Publikationstyp
Journal Article
Date Issued
2024-09-30
Sprache
English
Author(s)
Weiland, Christian  
Mehrphasenströmungen V-5  
Kameke, Alexandra von  
Mehrphasenströmungen V-5  
Schlüter, Michael  orcid-logo
Mehrphasenströmungen V-5  
TORE-DOI
10.15480/882.13416
TORE-URI
https://hdl.handle.net/11420/49451
Journal
Chemical engineering journal  
Volume
499
Article Number
155726
Citation
Chemical Engineering Journal 499: 155726 (2024)
Publisher DOI
10.1016/j.cej.2024.155726
Scopus ID
2-s2.0-85205385567
Publisher
Elsevier
A new model to predict the breakup of gaseous bubbles in a continuous liquid phase is developed. In the model each bubble is modelled as a spring–damper system, namely a Kelvin–Voigt element, while the outer force is derived by a Lagrangian analysis determining the largest stretching rate of the flow field below. The developed model is based on physical principles and no further arbitrary parameters have to be adjusted. Each bubble is observed on its way through the bubbly flow individually, taking into account its history along its respective path. With the implemented model numerical simulations in a wide range of scales are conducted, ranging from the laboratory scale of a vessel of 3L to the large industrial scale of 15m3. The simplicity of the model allows for a good cost to benefit ratio. In the present work, the achieved results are compared to experimental data obtained from optical measurements in a replica of a 200L aerated stirred tank reactor for various stirrer frequencies.
Subjects
Bubble breakup
Bubble size distribution
Computational fluid dynamics
Multiphase flows
Trajectory-based methods
DDC Class
660.2: Chemical Engineering
Funding(s)
SFB 1615 - SMARTe Reaktoren für die Verfahrenstechnik der Zukunft  
SFB 1615 - Teilprojekt B04: Maßgeschneiderte Transportprozesse in Mehrphasenreaktoren  
SFB 1615 - Teilprojekt B06: Systematische Multiskalenmodellierung und Designkonzept für SMARTe Reaktoren  
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S1385894724072176-main.pdf

Type

Main Article

Size

3.1 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback