Options
Defects and plasticity in ultrastrong supercrystalline nanocomposites
Citation Link: https://doi.org/10.15480/882.3260
Publikationstyp
Journal Article
Date Issued
2021-01-06
Sprache
English
TORE-DOI
TORE-URI
Journal
Volume
7
Issue
2
Article Number
eabb6063
Citation
Science Advances 2 (7): eabb6063 (2021-01-06)
Publisher DOI
Scopus ID
Supercrystalline nanocomposites are nanoarchitected materials with a growing range of applications but unexplored in their structural behavior. They typically consist of organically functionalized inorganic nanoparticles arranged into periodic structures analogous to crystalline lattices, including superlattice imperfections induced by processing or mechanical loading. Although featuring a variety of promising functional properties, their lack of mechanical robustness and unknown deformation mechanisms hamper their implementation into devices. We show that supercrystalline materials react to indentation with the same deformation patterns encountered in single crystals. Supercrystals accommodate plastic deformation in the form of pile-ups, dislocations, and slip bands. These phenomena occur, at least partially, also after cross-linking of the organic ligands, which leads to a multifold strengthening of the nanocomposites. The classic shear theories of crystalline materials are found to describe well the behavior of supercrystalline nanocomposites, which result to feature an elastoplastic behavior, accompanied by compaction.
DDC Class
600: Technik
More Funding Information
We acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 192346071-SFB 986. D.G. acknowledges the support from the Alexander von Humboldt Foundation. B.B. acknowledges the support from the Ministry of National Education of the Republic of Turkey.
Publication version
publishedVersion
Loading...
Name
eabb6063.full.pdf
Size
1.03 MB
Format
Adobe PDF