Options
A partitioned solution approach for electro-thermo-mechanical problems
Publikationstyp
Journal Article
Publikationsdatum
2014-12
Sprache
English
TORE-URI
Enthalten in
Volume
85
Issue
8
Start Page
1075
End Page
1101
Citation
Archive of Applied Mechanics 8 (85): 1075-1101 (2015)
Publisher DOI
Scopus ID
Publisher
Spinger
The purposes of this article are to present new aspects of modeling multi-physically coupled fields, focusing particularly on the partitioned treatment of electro-thermo-mechanical problems. Coupled problems of this kind occur in many industrial applications, such as micro-electrical devices, field-assisted sintering processes or electrical fuses. In this paper, we restrict ourselves to the case of nonlinear thermo-elasticity at finite strains and a heat source resulting from the electrical field. Plasticity effects are not taken into consideration. The objective is to ascertain the coupling of the algorithm relating to the fields involved individually and to demonstrate a global partitioned solution strategy. We also introduce several methods that increase algorithmic stability and accelerate the iterative coupling process. This article aims to present an efficient partitioned coupling strategy for different coupling levels between the fields. To this end, we study the proposed algorithm with the help of several numerical examples ranging from linear to highly nonlinear problems, involving substantial geometric changes and finite strains.
Schlagworte
convergence acceleration
multi-field problems
partitioned solution strategy
DDC Class
620: Ingenieurwissenschaften