TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Contractions, removals, and certifying 3-connectivity in line AR time
 
Options

Contractions, removals, and certifying 3-connectivity in line AR time

Publikationstyp
Journal Article
Date Issued
2013-07-18
Sprache
English
Author(s)
Schmidt, Jens M.  orcid-logo
TORE-URI
http://hdl.handle.net/11420/7640
Journal
SIAM journal on computing  
Volume
42
Issue
2
Start Page
494
End Page
535
Citation
SIAM Journal on Computing (2013)
Publisher DOI
10.1137/110848311
Scopus ID
2-s2.0-84880106124
Publisher
SIAM
One of the most noted construction methods of 3-vertex-connected graphs is due to Tutte and is based on the following fact: Any 3-vertex-connected graph G = (V, E) on more than 4 vertices contains a contractible edge, i.e., an edge whose contraction generates a 3-connected graph. This implies the existence of a sequence of edge contractions from G to the complete graph K4, such that every intermediate graph is 3-vertex-connected. A theorem of Barnette and Grünbaum gives a similar sequence using removals on edges instead of contractions. We show how to compute both sequences in optimal time, improving the previously best known running times of O(|V|2) to O(|E|). This result has a number of consequences; an important one is a new linear-time test of 3-connectivity that is certifying; finding such an algorithm has been a major open problem in the design of certifying algorithms in recent years. The test is conceptually different from well-known linear-time 3-connectivity tests and uses a certificate that is easy to verify in time O(|E|). We show how to extend the results to an optimal certifying test of 3-edge-connectivity. © 2013 Society for Industrial and Applied Mathematics.
Subjects
3-connected graph
Certifying algorithm
Construction sequence
Inductive characterization
Nested subdivisions
DDC Class
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback