TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Thermal with Electronic Excitation for the Unidirectional Rotation of a Molecule on a Surface
 
Options

Thermal with Electronic Excitation for the Unidirectional Rotation of a Molecule on a Surface

Publikationstyp
Journal Article
Date Issued
2023-08-21
Sprache
English
Author(s)
Au-Yeung, Kwan Ho  
Sarkar, Suchetana  
Kühne, Tim  
Aiboudi, Oumaima  
Ryndyk, Dmitry A.  
Robles, Roberto  
Lissel, Franziska  
Angewandte Polymerphysik M-EXK 6  
Lorente, Nicolas  
Joachim, Christian  
Moresco, Francesca  
TORE-URI
https://hdl.handle.net/11420/43355
Journal
The journal of physical chemistry C  
Volume
127
Issue
34
Start Page
16989
End Page
16994
Citation
Journal of Physical Chemistry C 127 (34): 16989–16994 (2023-08-21)
Publisher DOI
10.1021/acs.jpcc.3c04990
Scopus ID
2-s2.0-85170261968
Exploring the limits of the microscopic reversibility principle, we investigated the interplay between thermal and electron tunneling excitations for the unidirectional rotation of a molecule-rotor on the Au(111) surface. We identified a range of moderate voltages and temperatures where heating the surface enhances the unidirectional rotational rate of a chemisorbed DMNI-P rotor. At higher voltage, inelastic tunneling effects dominate, while at higher temperature, the process becomes stochastic. At each electron transfer event during tunneling, the quantum mixing of ground and excited electronic states brings part of the surface thermal energy in the excited electronic states of the molecule-rotor. Thermal energy contributes therefore to the semiclassical unidirectional rotation without contradicting the microscopic reversibility principle.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback