Options
Locating real eigenvalues of a spectral problem in fluid-solid type structures
Citation Link: https://doi.org/10.15480/882.1555
Publikationstyp
Journal Article
Publikationsdatum
2005-01-01
Sprache
English
Author
Voß, Heinrich
Institut
Enthalten in
Volume
Volume 2005 (2005)
Issue
Issue 1
Start Page
37
End Page
48
Citation
Journal of Applied Mathematics, vol. 2005, no. 1, pp. 37-48, 2005
Publisher DOI
Scopus ID
Publisher
Hindawi Publishing Corporation
Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.
Schlagworte
nonlinear eigenvalue problem
eigenvalue bounds
minmax principle
fluid structure interaction
DDC Class
510: Mathematik
Loading...
Name
JAM.2005.751256.pdf
Size
562.65 KB
Format
Adobe PDF