TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. 6-degree vision based tracking of a mandible phantom with deep learning
 
Options

6-degree vision based tracking of a mandible phantom with deep learning

Citation Link: https://doi.org/10.15480/882.13352
Publikationstyp
Journal Article
Date Issued
2024-09-12
Sprache
English
Author(s)
Boudreault, Ana Jade  
Spille, Johannes Heinrich  
Wiltfang, Jörg
Schlaefer, Alexander  
Medizintechnische und Intelligente Systeme E-1  
Neidhardt, Maximilian  
Medizintechnische und Intelligente Systeme E-1  
TORE-DOI
10.15480/882.13352
TORE-URI
https://hdl.handle.net/11420/49343
Journal
Current directions in biomedical engineering  
Volume
10
Issue
1
Start Page
5
End Page
8
Citation
Current Directions in Biomedical Engineering 10 (1): 5-8 (2024)
Publisher DOI
10.1515/cdbme-2024-0102
Scopus ID
2-s2.0-85204436462
Publisher
De Gruyter
During maxillofacial surgery, the precise placement of surgical tools is crucial for accurate implant placement. Particularly if multiple implants are needed, e.g., after cancerous bone removal, visual landmarks might not be obtainable. To this end, we propose a vision-based tracking approach with deep learning. Our markerless tracking approach is based on video streams from two cameras for tracking a mandible phantom. We study, to what extent vision-based localization using deep learning is feasible. For real-time 6D pose estimation we propose a Siamese network with a ResNet-18 subnetwork. We acquire a large training dataset with a robot and evaluate the tracking accuracy on partially occluded images. Thereby, we mimic visual information that is accessible during clinical interventions. We report a mean position error of 1.33 ± 1.14mm and a rotation error of 0.86 ± 0.71 deg for partially occluded images. Overall we present a promising tracking approach that is marker-free and robust toward image artifacts.
Subjects
Markerless
Maxillofacial Surgery
Medical Phantom
RGB Camera
Tracking
MLE@TUHH
DDC Class
660.6: Biotechnology
Funding(s)
Entwicklung eines Virtuelle Realität (VR)-basierten Trainings für ältere Patienten mit erhöhtem Frakturrisiko zur Prävention von Stürzen und Verbesserung der Balancefähigkeit im Alter  
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

10.1515_cdbme-2024-0102.pdf

Type

Main Article

Size

4.86 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback