TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Finding demand patterns in supply chain planning [Nachfragemuster in der Lieferkette erkennen]
 
Options

Finding demand patterns in supply chain planning [Nachfragemuster in der Lieferkette erkennen]

Publikationstyp
Journal Article
Date Issued
2018-08-20
Sprache
English
Author(s)
Ponsignon, Thomas  
Govindaraju, Pramod  
Achter, Sebastian  
Ehm, Hans  
Meyer, Matthias  
Institut
Controlling und Simulation W-1  
TORE-URI
http://hdl.handle.net/11420/9122
Journal
atp Magazin  
Volume
60
Issue
08
Start Page
54
End Page
61
Citation
atp magazin 60 (08): 54-61 (2018)
Publisher DOI
10.17560/atp.v60i08.2360
Advancements in semiconductor industry have resulted in the need for extracting vital information from vast amount of data. In the operational process of supply chain, understanding customer demand data provides important insights for demand planning. Clustering analysis offers potential to identify latent information from multitudinous customer demand data and supports enhanced decision- making. In this paper, two clustering algorithms to identify customer demand patterns are presented, namely K-means and DBSCAN. The implementation of both algorithms on the prepared data sets is discussed and their performance is compared. The paper outlines the importance of deciphering valuable insights from customer demand data in the betterment of a distributed cognitive process of demand planning.
Subjects
Halbleiter
Supply Chain
Bedarfsplanung
Verteilter Kognition Prozess
Clusteranalyse
K-means
DBSCAN
DDC Class
330: Wirtschaft
380: Handel, Kommunikation, Verkehr
670: Industrielle Fertigung
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback