Options
Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16
Citation Link: https://doi.org/10.15480/882.3740
Publikationstyp
Journal Article
Date Issued
2019-06-28
Sprache
English
Author(s)
TORE-DOI
Journal
Volume
12
Issue
1
Article Number
163
Citation
Biotechnology for Biofuels 12 (1): 163 (2019-06-28)
Publisher DOI
Scopus ID
Publisher
BioMed Central
Background: Cupriavidus necator is the best-studied knallgas (also termed hydrogen oxidizing) bacterium and provides a model organism for studying the production of the storage polymer polyhydroxybutyrate (PHB). Genetically engineered strains could be applied for the autotrophic production of valuable chemicals. Nevertheless, the efficiency of the catalyzed processes is generally believed to be lower than with acetogenic bacteria. Experimental data on the potential efficiency of autotrophic production with C. necator are sparse. Hence, this study aimed at developing a strain for the production of the bulk chemical acetoin from carbon dioxide and to analyze the carbon and electron yield in detail. Results: We developed a constitutive promoter system based on the natural PHB promoter of this organism. Codon-optimized versions of the acetolactate dehydrogenase (alsS) and acetolactate decarboxylase (alsD) from Bacillus subtilis were cloned under control of the PHB promoter in order to produce acetoin from pyruvate. The production process's efficiency could be significantly increased by deleting the PHB synthase phaC2. Further deletion of the other PHB synthase encoded in the genome (phaC1) led to a strain that produced acetoin with > 100% carbon efficiency. This increase in efficiency is most probably due to a minor amount of cell lysis. Using a variation in hydrogen and oxygen gas mixtures, we observed that the optimal oxygen concentration for the process was between 15 and 20%. Conclusion: To the best of our knowledge, this study describes for the first time a highly efficient process for the chemolithoautotrophic production of the platform chemical acetoin.
Subjects
Acetoin
Autotroph
Cupriavidus necator H16
Platform chemical
Polyhydroxybutyrate
Ralstonia eutropha H16
DDC Class
570: Biowissenschaften, Biologie
More Funding Information
The authors would like to thank the Nagelschneider Foundation for their generous financial support in the form of a stipend for Carina Windhorst.
Publication version
publishedVersion
Loading...
Name
s13068-019-1512-x.pdf
Size
1.13 MB
Format
Adobe PDF