TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Current-to-field prediction for non-linear magnetic systems via neural networks
 
Options

Current-to-field prediction for non-linear magnetic systems via neural networks

Citation Link: https://doi.org/10.15480/882.15072
Publikationstyp
Journal Article
Date Issued
2025-03-14
Sprache
English
Author(s)
Förger, Fynn  orcid-logo
Biomedizinische Bildgebung E-5  
Jürß, Paul  
Biomedizinische Bildgebung E-5  
Boberg, Marija  orcid-logo
Biomedizinische Bildgebung E-5  
Hau, Tim  
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
Möddel, Martin  orcid-logo
Biomedizinische Bildgebung E-5  
TORE-DOI
10.15480/882.15072
TORE-URI
https://hdl.handle.net/11420/55328
Journal
International journal on magnetic particle imaging  
Volume
11
Issue
1, Suppl 1
Article Number
2503009
Citation
International Journal on Magnetic Particle Imaging 11 (1, Suppl 1): 2503009 (2005)
Publisher DOI
10.18416/IJMPI.2025.2503009
Scopus ID
2-s2.0-105000558833
Publisher
Infinite Science Publishing
Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation, sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields from the input currents, drastically speeding up current-to-field prediction.
DDC Class
621: Applied Physics
004: Computer Sciences
519: Applied Mathematics, Probabilities
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

862.pdf

Type

Main Article

Size

1.49 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback