TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. The complexity ecology of parameters: An illustration using bounded max leaf number
 
Options

The complexity ecology of parameters: An illustration using bounded max leaf number

Publikationstyp
Journal Article
Date Issued
2009-01-09
Sprache
English
Author(s)
Fellows, Michael  
Lokshtanov, Daniel  
Misra, Neeldhara  
Mnich, Matthias  orcid-logo
Rosamond, Frances  
Saurabh, Saket  
TORE-URI
http://hdl.handle.net/11420/4557
Journal
Theory of computing systems  
Start Page
822
End Page
848
Citation
Theory of Computing Systems (2009).
Publisher DOI
10.1007/s00224-009-9167-9
Publisher
Springer Nature
In the framework of parameterized complexity, exploring how one parameter affects the complexity of a different parameterized (or unparameterized problem) is of general interest. A well-developed example is the investigation of how the parameter treewidth influences the complexity of (other) graph problems. The reason why such investigations are of general interest is that real-world input distributions for computational problems often inherit structure from the natural computational processes that produce the problem instances (not necessarily in obvious, or well-understood ways). The max leaf number ml(G) of a connected graph G is the maximum number of leaves in a spanning tree for G. Exploring questions analogous to the well-studied case of treewidth, we can ask: how hard is it to solve 3-Coloring, Hamilton Path, Minimum Dominating Set, Minimum Bandwidth or many other problems, for graphs of bounded max leaf number? What optimization problems are W[1]-hard under this parameterization? We do two things:

(1) We describe much improved FPT algorithms for a large number of graph problems, for input graphs G for which ml(G)≤k, based on the polynomial-time extremal structure theory canonically associated to this parameter. We consider improved algorithms both from the point of view of kernelization bounds, and in terms of improved fixed-parameter tractable (FPT) runtimes O *(f(k)).

(2) The way that we obtain these concrete algorithmic results is general and systematic. We describe the approach, and raise programmatic questions.
DDC Class
004: Informatik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback