TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Prediction of anaerobic degradation kinetics based on substrate composition of lignocellulosic biomass
 
Options

Prediction of anaerobic degradation kinetics based on substrate composition of lignocellulosic biomass

Publikationstyp
Journal Article
Date Issued
2024-09-01
Sprache
English
Author(s)
Alrefaey, Karim
Schultz, Jana  
Umwelttechnik und Energiewirtschaft V-9  
Scherzinger, Marvin  
Umwelttechnik und Energiewirtschaft V-9  
Nosier, Mahmoud A.  
Elbanhawy, Amr Y.  
TORE-URI
https://hdl.handle.net/11420/48186
Journal
Bioresource technology reports  
Volume
27
Article Number
101882
Citation
Bioresource Technology Reports 27: 101882 (2024)
Publisher DOI
10.1016/j.biteb.2024.101882
Scopus ID
2-s2.0-85196487668
Publisher
Elsevier
This study presents a comprehensive biochemical predictive approach for assessing biogas production kinetics across ten lignocellulosic substrates in batch operation. The methodology employs a range of kinetic and regression models, all grounded in the substrates' chemical composition. Among the kinetic models, the cone model demonstrated superior performance, achieving an average error of 1.67 % in describing biogas production from all substrates. The quadratic Monod type model followed closely, with an error of 1.96 %. Among the regression models, on the other hand, the logistic function model exhibited enhanced predictive capabilities, yielding an average error of 6.02 %, while the Chen and Hashimoto one showed a higher error of 60.54 %. The findings underscore the potential of precise biogas production forecasting and tracking the daily rates of gas generation, rather than solely relying on cumulative gas yields at the end of the process.
Subjects
Anaerobic digestion
Biogas production
Lignocellulosic biomass
Regression models
DDC Class
500: Science
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback