TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Denoising the system matrix with deep neural networks for better MPI reconstructions
 
Options

Denoising the system matrix with deep neural networks for better MPI reconstructions

Citation Link: https://doi.org/10.15480/882.15007
Publikationstyp
Journal Article
Date Issued
2025
Sprache
English
Author(s)
Tsanda, Artyom 
Biomedizinische Bildgebung E-5  
Scheffler, Konrad  
Biomedizinische Bildgebung E-5  
Reiß, Sarah  
Biomedizinische Bildgebung E-5  
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
TORE-DOI
10.15480/882.15007
TORE-URI
https://hdl.handle.net/11420/55183
Journal
International journal on magnetic particle imaging  
Volume
11
Issue
1
Article Number
2503047
Citation
International Journal on Magnetic Particle Imaging 11 (1): 2503047 (2025)
Publisher DOI
10.18416/IJMPI.2025.2503047
Scopus ID
2-s2.0-105000478227
Publisher
Infinite Science Publishing
Peer Reviewed
true
Magnetic Particle Imaging commonly relies on the system matrix (SM) to reconstruct particle distributions, but noise during acquisition limits both its resolution and image quality. Traditionally, noise reduction requires averaging multiple measurements, which increases acquisition time. This paper presents a deep neural network trained on simulated SMs and measured background noise, which effectively generalizes to real-world data. The model recovers higher frequency components of the SM and serves as a general pre-processing step, enhancing image reconstruction quality while reducing the need for extensive averaging, thus accelerating SM acquisition.
DDC Class
616: Deseases
006: Special computer methods
519: Applied Mathematics, Probabilities
Funding(s)
SFB 1615 - SMARTe Reaktoren für die Verfahrenstechnik der Zukunft  
SFB 1615 - Teilprojekt B03: Magnetresonanzbildgebung von großräumigen mehrphasigen und reaktiven Strömungssystemen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

810.pdf

Size

296.34 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback